首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C60的加成反应   总被引:2,自引:0,他引:2  
唐光诗  董树安 《化学进展》1997,9(3):300-310
富勒烯化学是以全碳分子球烯为母体的新兴有机化学领域,在材料、医学及立体化学合成方法等方面具有广泛的应用和发展前景。本文综述了C60的加成反应,较全面地展示了富勒烯的化学性质。  相似文献   

2.
Since the first reports in the late 1970s on transition metal complexes containing pincer‐type ligands—named after the particular coordination mode of these ligands—these systems have attracted increasing interest owing to the unusual properties of the metal centers imparted by the pincer ligand. Typically, such a ligand comprises an anionic aryl ring which is ortho,ortho‐disubstituted with heteroatom substituents, for example, CH2NR2, CH2PR2 or CH2SR, which generally coordinate to the metal center, and therefore support the M−C σ bond. This commonly results in a terdentate and meridional coordination mode consisting of two metallacycles which share the M−C bond. Detailed studies of the formation and the properties of a large variety of pincers containing platinum group metal complexes have provided direct access to both a fundamental understanding of a variety of reactions in organometallic chemistry and to a range of new applications of these complexes. The discovery of alkane dehydrogenation catalysts, the mechanistic elucidation of fundamental transformations (for example, C−C bond activation), the construction of the first metallodendrimers for sustainable homogeneous catalysis, and the engineering of crystalline switches for materials processing represent only a few of the many highlights which have emanated from these numerous investigations. This review discusses the synthetic methodologies that are currently available for the preparation of platinum group metal complexes containing pincer ligands and especially emphasizes different applications that have been realized in materials science such as the development and engineering of sensors, switches, and catalysts.  相似文献   

3.
Magnetic nature carbon dots (MNCDs) are fast growing materials with extremely unique physico-chemical properties and physiological ability to extend their applications from separation science to detection and bio-/magnetic resonance imaging applications. Recent studies have revealed that the MNCDs are significantly used as promising agents in analytical chemistry for the separation and identification of trace level target analytes. Further, the MNCDs have been used as probes for bioimaging of cells and magnetic resonance imaging (MRI) of tumors. Due to the lack of comprehensive reviews in this emerging field especially MNCDs applications in analytical chemistry, this review may provide quick guide and reference on the MNCDs-based analytical approaches for the separation and detection of trace level analytes, and bio- and MR- imaging of various cells. In this review article, we will summarize the synthetic approaches for the fabrication of MNCDs. The main part of this proposed review is devoted to the tremendous applications of MNCDs (Fe3O4@CDs, metal ion (Fe3+, Mn2+, Co2+ and Gd2+)-doped CDs, MnO2@CDs) in analytical chemistry from separation science to detection and bio- and MR imaging. Finally, we will explore the challenges and future prospects of magneto fluorescent carbon dots in biomedical applications.  相似文献   

4.
The ability of a broad range of N-heterocycles to act as very effective and stable complexation agents for several transition metal ions, such as cobalt(II), copper(II), nickel(II), and ruthenium(II), has long been known in analytical chemistry. This behavior was later utilized in supramolecular chemistry for the construction of highly sophisticated architectures, such as helicates, racks, and grids. The discovery of macromolecules by Staudinger in 1922 opened up avenues towards sophisticated materials with properties hitherto completely unknown. In the last few decades, the combination of macromolecular and supramolecular chemistry has been attempted by developing metal-complexing and metal-containing polymers for a wide variety of applications that range from filtration to catalysis. The stability of the polymer-metal complex is a fundamental requirement for such applications. In this respect, the use of bi- and terpyridines as chelating ligands is highly promising, since these molecules are known to form highly stable complexes with interesting physical properties with transition-metal ions. A large number of different structures have been designed for many different applications, but polymers based on the application of coordinative forces have been prepared in a few cases only. Furthermore, the synthetic procedures applied frequently resulted in low yields. During the last few years, strong efforts have been made in the direction of self-assembling and supramolecular polymers as novel materials with "intelligent" and tunable properties. In this review, an overview of this active area at the interface of supramolecular and macromolecular chemistry is given.  相似文献   

5.
Sol-gel chemistry provides a route to preparing inorganic polymers with ionically conducting properties by room temperature synthetic routes. The products, which are rigid solids, are well-suited as media for conventional electrochemical techniques such as cyclic voltammetry. This property, when combined with their ability to host a wide variety of species, has allowed development of a variety of devices of interest in electrochemistry and analytical chemistry. Examples include cathodes for fuels cells, electrochromic devices, biosensors, and amperometric sensors for analytes in the gas phase. In this review, the emphasis will be on reported applications to analytical chemistry; however, studies on the general properties of these materials and on their use in electrochemical science also will be summarized because they may provide the basis for further development of sensors.  相似文献   

6.
富勒烯化学是以全碳分子球烯为母体的新兴有机化学领域, 在材料、医学及立体化学合成方法等方面具有广泛的应用和发展前景。本文综述了C60的加成反应, 较全面地展示了富勒烯的化学性质。  相似文献   

7.
张洪杰 《应用化学》2018,35(9):975-975
喜逢中国科学院长春应用化学研究所建所70周年华诞之际,真诚感谢安立佳院士作为客座编辑邀请国内化学相关领域著名院士和专家出版这一期纪念刊专辑。《应用化学》创刊于1983年,为中国科学院长春应用化学研究所的发展和国内相关化学领域提供了一个学术交流的平台,始终秉持“应用化学,追求卓越”的办刊理念,面向科研单位、大专院校和化学化工领域的科研及技术人员,着重报道化学及交叉学科有应用前景的创新性基础科学研究和创造性科研技术成果,介绍该领域中的新发现、新理论、新方法、新技术、新产品及相关科技信息,为推动应用化学学科的发展、加强国内国际间的学术交流、人才培养和现代化建设服务。该专辑的出版必将对该领域的发展起到重要的促进作用。  相似文献   

8.
金属有机框架材料的研究进展   总被引:1,自引:0,他引:1  
金属有机框架(metal-organic frameworks,MOFs)材料是一类由有机配体与金属中心经过自组装形成的具有可调节孔径的材料。与传统无机多孔材料相比,MOFs材料具有更大的比表面积,更高的孔隙率,结构及功能更加多样,因而已经被广泛应用于气体吸附与分离、传感器、药物缓释、催化反应等领域中。新兴材料的出现极大地促进了各个学科间的相互发展,本文综述了近年来MOFs材料的研究发展,包括MOFs材料自身的特点、国内外发展现状、应用领域以及复合MOFs材料的研究热点,并对今后的发展进行了展望。  相似文献   

9.
Although various synthetic methodologies including organic synthesis, polymer chemistry, and materials science are the main contributors to the production of functional materials, the importance of regulation of nanoscale structures for better performance has become clear with recent science and technology developments. Therefore, a new research paradigm to produce functional material systems from nanoscale units has to be created as an advancement of nanoscale science. This task is assigned to an emerging concept, nanoarchitectonics, which aims to produce functional materials and functional structures from nanoscale unit components. This can be done through combining nanotechnology with the other research fields such as organic chemistry, supramolecular chemistry, materials science, and bio-related science. In this review article, the basic-level of nanoarchitectonics is first presented with atom/molecular-level structure formations and conversions from molecular units to functional materials. Then, two typical application-oriented nanoarchitectonics efforts in energy-oriented applications and bio-related applications are discussed. Finally, future directions of the molecular and materials nanoarchitectonics concepts for advancement of functional nanomaterials are briefly discussed.  相似文献   

10.
Metal ion coordination in metallo-supramolecular assemblies offers the opportunity to fabricate and study devices and materials that are equally important for fundamental research and new technologies. Metal ions embedded in a specific ligand field offer diverse thermodynamic, kinetic, chemical, physical and structural properties that make these systems promising candidates for active components in functional materials. In particular, dynamic coordination polymers offer exciting opportunities to provide materials with responsive properties. In addition, this approach allows to incorporate the well known properties of metal complexes in polymeric architectures. This review highlights the improvements and the possible applications based on metallo-supramolecular systems with an emphasis on materials science. Examples for new materials such as molecular magnets, coordination polymers as carrier package as well as molecular electronics are featured in this article.  相似文献   

11.
Because of their remarkable and unmatched optical and magnetic properties, the lanthanides are under the limelight when it comes to high technology. These elements are used in strategic applications such as optical glasses and lasers, telecommunications, lighting and displays, magnetic materials, hard-disk drives, security inks and counterfeiting tags, catalysis, biosciences, and medicine, to name but a few. Long considered as minor actors in transition metal chemistry, they have now gained respect from coordination chemists who insert them into sophisticated functional and polyfunctional molecules and materials. This mini review focuses on trivalent lanthanide ions and first summarizes their basic properties. Then some classical aspects of their coordination chemistry are discussed, followed by macrocyclic chemistry, supramolecular chemistry, and self-assembly processes. The last part of this contribution deals with coordination polymers and hybrid materials including potential applications.  相似文献   

12.
Polymerized high internal phase emulsions as highly porous adsorption materials have received increasing attention and wide applications in separation science in recent years due to their remarkable merits such as highly interconnected porosity, high permeability, good thermal and chemical stability, and tailorable chemistry. In this review, we attempt to introduce some strategies to utilize polymerized high internal phase emulsions for separation science, and highlight the recent advances made in the applications of polymerized high internal phase emulsions for diverse separation of small organic molecules, carbon dioxide, metal ions, proteins, and other interesting targets. Potential challenges and future perspectives for polymerized high internal phase emulsion research in the field of separation science are also speculated at the end of this review.  相似文献   

13.
Today, seeking new materials for tailor-made applications and new devices leads to explore the potential offered by various kinds of functional building blocks. Hence, it concerns not only solid-state chemists, physicists or materials engineers, but also the area of (supra)molecular chemistry, and biochemistry as well. This is especially clear in the field of hybrid multifunctional materials. Indeed, their design requires investigating new concepts derived from principles developed in these different disciplines. The aim of this critical review is to present the last achievements concerning transition metal hydroxide hybrids, their synthesis, flexibility and functional properties. They often provide nice model systems for understanding the correlation between structure and physical properties brought by the molecular moieties grafted onto the metal hydroxide basis layers. The contribution of the atomic scale modelling to the electronic structure calculations and structural optimization is also reported (216 references).  相似文献   

14.
15.
This tutorial review highlights some active areas of research into non-oxide sol-gel chemistry. These aim to capture some of the advantages of methods developed mainly with oxides for a new generation of functional materials based on main group and metal nitrides, and semiconducting chalcogenides. Sol-gel processing has a long track record in producing useful materials for optical, magnetic, electrical, catalytic and structural applications. Controlled morphologies can be produced on all lengths scales, from ordered mesoporous arrays to thin films, fibres and monoliths. Hence there is an opportunity to produce new morphologies in non-oxides and hence new applications of these materials.  相似文献   

16.
冯丹  隗翠香  夏炎 《色谱》2017,35(3):237-244
金属有机骨架(MOFs)材料是一类以过渡金属为中心、含杂原子的有机物为配体、通过配位作用形成的周期性网络多孔晶体材料。与其他的多孔材料相比,MOFs配体种类繁多,比表面积极大,孔径大小可调控且具有特殊(饱和或不饱和)的金属位点,在气体存储、催化、吸附与分离等领域有广阔的应用前景。近年来,功能化MOFs对污染物的富集和去除成为学者关注的热点。这是由于通过对MOFs进行功能化修饰,能够改变MOFs的孔径大小、表面带电性质等物化性质,从而实现对目标物更高效的吸附。该文综述了近年来功能化MOFs对饮用水污染物吸附的研究进展,包括饮用水污染物的类型及危害、功能化MOFs的制备方法以及去除饮用水污染物的应用,并对今后的发展前景进行了展望。  相似文献   

17.
Protein assemblies have recently become known as potential molecular scaffolds for applications in materials science and bio‐nanotechnology. Efforts to design protein assemblies for construction of protein‐based hybrid materials with metal ions, metal complexes, nanomaterials and proteins now represent a growing field with a common aim of providing novel functions and mimicking natural functions. However, the important roles of protein assemblies in coordination and biosupramolecular chemistry have not been systematically investigated and characterized. In this personal account, we focus on our recent progress in rational design of protein assemblies using bioinorganic chemistry for (1) exploration of unnatural reactions, (2) construction of functional protein architectures, and (3) in vivo applications.  相似文献   

18.
The formation of amide bonds is one of the most stimulating emerging areas in organic and medicinal chemistry. Amides are recognized as central building blocks in a plethora of interesting pharmaceuticals, proteins, peptides, polymers, natural products, functional materials, and biologically relevant carbocyclic or heterocyclic molecules, and they are also found in a variety of industrial fields. Therefore, a review of recent developments and challenges in the formation of amide bonds from carbonyl compounds is particularly important. Herein, we have scrutinized a range of metal‐catalyzed and metal‐free approaches for the synthesis of amides from aldehydes, ketones, and oximes. In addition, this Minireview highlights relevant mechanistic studies, as well as the potential applications of these methods in the synthesis of candidate drug molecules. We hope that the data compiled herein will encourage further progress in this notable area of chemistry research.  相似文献   

19.
The growing applications of click chemistry   总被引:2,自引:0,他引:2  
Click chemistry, the subject of this tutorial review, is a modular synthetic approach towards the assembly of new molecular entities. This powerful strategy relies mainly upon the construction of carbon-heteroatom bonds using spring-loaded reactants. Its growing number of applications are found in nearly all areas of modern chemistry from drug discovery to materials science. The copper(I)-catalysed 1,2,3-triazole forming reaction between azides and terminal alkynes has become the gold standard of click chemistry due to its reliability, specificity and biocompatibility.  相似文献   

20.
张晓琼  汪彤  王培怡  姚伟  丁明玉 《色谱》2016,34(12):1176-1185
金属有机骨架(MOFs)是一类由无机金属离子与有机配体自组装形成的新型有机-无机杂化多孔材料,因具有比表面积超高、结构多样、热稳定性良好、孔道尺寸和性质可调等优势,在分离领域表现出重要的应用价值。然而,采用传统方法制备的MOFs多为粒径在微米或亚微米尺度的晶体,且颗粒形貌不规则,因此限制了MOFs在样品前处理和色谱固定相等领域的应用和发展。构建基于MOFs的复合材料是弥补MOFs应用缺陷的一项有效措施,有望在保留MOFs优越的分离特性的同时,引入基体材料的特定性能。该文简要综述了近年来MOFs及其复合材料在吸附、样品前处理和色谱固定相等分离领域中的应用进展,并对MOFs在分离科学中的应用前景做出展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号