首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
13C, 14N, 15N, 17O, and 35Cl NMR parameters, including chemical shift tensors and quadrupolar tensors for 14N, 17O, and 35Cl, are calculated for the crystalline forms of various amino acids under periodic boundary conditions and complemented by experiment where necessary. The 13C shift tensors and 14N electric field gradient (EFG) tensors are in excellent agreement with experiment. Similarly, static 17O NMR spectra could be precisely simulated using the calculation of the full chemical shift (CS) tensors and their relative orientation with the EFG tensors. This study allows correlations to be found between hydrogen bonding in the crystal structures and the 17O NMR shielding parameters and the 35Cl quadrupolar parameters, respectively. Calculations using the two experimental structures for L-alanine have shown that, while the calculated isotropic chemical shift values of 13C and 15N are relatively insensitive to small differences in the experimental structure, the 17O shift is markedly affected.  相似文献   

2.
DFT calculations of electric field gradient (EFG) tensors at the sites of 14N, 17O, and 2H nuclei are carried out to characterize the hydrogen bond (HB) interactions in the sulfapyridine crystal structure. One-molecule (monomer) and hydrogen-bonded hexameric cluster models of sulfapyridine are constructed according to available X-ray coordinates where the proton positions are optimized. Then, EFG tensors are calculated for both monomer and target molecule in the hexameric cluster of sulfapyridine to show the effect of HB interactions on the tensors. The calculated EFG tensors are converted to the experimentally measurable nuclear quadrupole resonance (NQR) parameters: quadrupole coupling constant (C Q ) and asymmetry parameter (η Q ). The results reveal different contribution of various nuclei to N-H⋯N and N-H⋯O HB interactions in the cluster where the N2 and O1 have major contributions. The computations are performed with B3LYP and B3PW91 functionals DFT method and 6-311+G* and 6-311++G** standard basis sets using the Gaussian 98 package.  相似文献   

3.
In this paper extensive systematic computational study has been carried out to justify hydrogen bonding interactions and their influence on the oxygen, nitrogen and hydrogen NQR and NMR parameters of the anhydrous and monohydrated guanine crystal structures at two different levels, B3LYP and MP2, using 6-311++G** and D95** basis sets. These theoretical data have been compared with experimental NMR and NQR measurements. For further investigation, results of cluster calculation have been compared with that of a single molecule. Our theoretical NQR and NMR parameters of 17O, 15N and 2H atoms of anhydrous and monohydrated guanine exhibited extreme sensitivity to electron distribution around mentioned nuclei caused by cooperative influences of various types of hydrogen bonding interactions. Fortunately, our calculated isotropic shielding values and CS tensors for the 17O and 15N nuclei as well as obtained 14N-NQR parameters are in excellent agreement with experimental data. Therefore, we can undoubtedly conclude that for anhydrous and monohydrated guanine tetrameric clusters including intermolecular interactions, our theoretical estimates are in better agreement with observed experimental values than those in which these interactions have been ignored.  相似文献   

4.
Solid-state nuclear magnetic resonance (NMR) parameters of 17O, 14N/15N, and 2H/1H nuclei were evaluated in two available neutron crystalline structures of N-methylacetamide (NMA) at 250 and 276 K, NMA-I and NMA-II, respectively. Density functional theory calculations were performed by B3LYP method and 6-311++G** and IGLO-II type basis sets to calculate the electric field gradient (EFG) and chemical shielding (CS) tensors at the sites of mentioned nuclei. In order to investigate hydrogen bonds (HBs) effects on NMR tensors, calculations were performed on four-model systems of NMA: an optimized isolated gas-phase, crystalline monomers, crystalline dimers, and crystalline trimers. Comparing the calculated results reveal the influence of N–H···O=C and C–H···O=C HB types on the NMR tensors which are observable by the evaluated parameters including quadrupole coupling constant, C Q, and isotropic CS, σ iso. Furthermore, the results demonstrate more influence of HB on the EFG and CS tensors of NMA at 276 K rather than that of 250 K.  相似文献   

5.
A computational study at the level of density functional theory (DFT) employing 6-311++G** standard basis set was carried out to evaluate nuclear quadrupole resonance (NQR) spectroscopy parameters in cytosine-5-acetic acid (C5AA). Since the electric field gradient (EFG) tensors are very sensitive to the electrostatic environment at the sites of quadruple nuclei, the most possible interacting molecules with the target one were considered in a five-molecule model system of C5AA using X-ray coordinates transforming. The hydrogen atoms positions were optimized and two model systems of original and H-optimized C5AA were considered in NQR calculations. The calculated EFG tensors at the sites of (17)O, (14)N, and (2)H nuclei were converted to their experimentally measurable parameters, quadrupole coupling constants and asymmetry parameters. The evaluated NQR parameters reveal that the nuclei in original and H-optimized systems contribute to different hydrogen bonding (HB) interaction. The comparison of calculated parameters between optimized isolated gas-phase and crystalline monomer also shows the relationship between the structural deformation and NQR parameters in C5AA. The basis set superposition error (BSSE) calculations yielded no significant errors for employed basis set in the evaluation of NQR parameters. All the calculations were performed by Gaussian 98 package of program.  相似文献   

6.
Hydrogen-bonding effects in the real crystalline structure of 9-methyladenine, 9-MA, were studied using calculated electric field gradient, EFG, and chemical shielding, CS, tensors for nitrogen and hydrogen nuclei via density functional theory. The calculations were carried out at the B3LYP and B3PW91 levels with the 6-311++G basis set via the Gaussian 98 package. Nuclear quadrupole coupling constants, C(Q), and asymmetry parameters, eta(Q), are reported for (14)N and (2)H. The chemical shielding anisotropy, Deltasigma, and chemical shielding isotropy, sigma(iso), are also reported for (15)N and (1)H. The difference between the calculated parameters of the monomer and heptameric layer-like cluster 9-MA shows how much H-bonding interactions affect the EFG and CS tensors of each nucleus. This result indicates that N(10) (imino nitrogen) has a major role in H-bonding interactions, whereas that of N(9) is negligible. There is good agreement between the present calculated parameters and reported experimental data. Although some discrepancies were observed, this could be attributed to the different conditions which were applied for calculation and the experiments.  相似文献   

7.
We report a computational study for the 17O NMR tensors (electric field gradient and chemical shielding tensors) in crystalline uracil. We found that N-H...O and C-H...O hydrogen bonds around the uracil molecule in the crystal lattice have quite different influences on the 17O NMR tensors for the two C=O groups. The computed 17O NMR tensors on O4, which is involved in two strong N-H...O hydrogen bonds, show remarkable sensitivity toward the choice of cluster model, whereas the 17O NMR tensors on O2, which is involved in two weak C-H...O hydrogen bonds, show much smaller improvement when the cluster model includes the C-H...O hydrogen bonds. Our results demonstrate that it is important to have accurate hydrogen atom positions in the molecular models used for 17O NMR tensor calculations. In the absence of low-temperature neutron diffraction data, an effective way to generate reliable hydrogen atom positions in the molecular cluster model is to employ partial geometry optimization for hydrogen atom positions using a cluster model that includes all neighboring hydrogen-bonded molecules. Using an optimized seven-molecule model (a total of 84 atoms), we were able to reproduce the experimental 17O NMR tensors to a reasonably good degree of accuracy. However, we also found that the accuracy for the calculated 17O NMR tensors at O2 is not as good as that found for the corresponding tensors at O4. In particular, at the B3LYP/6-311++G(d,p) level of theory, the individual 17O chemical shielding tensor components differ by less than 10 and 30 ppm from the experimental values for O4 and O2, respectively. For the 17O quadrupole coupling constant, the calculated values differ by 0.30 and 0.87 MHz from the experimental values for O4 and O2, respectively.  相似文献   

8.
A computational investigation was carried out to characterize the 17O and 1H chemical shielding (CS) tensors in crystalline aspirin. It was found that O–H⋯O and C–H⋯O hydrogen bonds around the aspirin molecule in the crystal lattice have a different influence on the calculated 17O and 1H CS eigenvalues and their orientations in the molecular frame of axes. The calculations were performed with the BLYP, B3LYP, and M06 functionals employing 6-311++G(d,p) standard basis set. Calculated CS tensors were used to evaluate the 17O and 1H chemical shift isotropy (δiso) and anisotropy (Δσ) in crystalline aspirin, which are in reasonable agreement with available experimental data. The difference between the calculated NMR parameters of the monomer and molecular clusters shows how much hydrogen-bonding interactions affect the CS tensors of each nucleus.  相似文献   

9.
A systematic computational study was carried out to characterize the 17O, 14N, and 2H nuclear quadrupole resonance (NQR) parameters in the anhydrous and monohydrated cytosine crystalline structures. To include the hydrogen-bonding effects in the calculations, the most probable interacting molecules with the central molecule in the crystalline phase were considered in the pentameric clusters of both structures. To calculate the parameters, couples of the methods B3LYP and B3PW91 and the basis sets 6-311++G** and CC-pVTZ were employed. The mentioned methods calculated reliable values of 17O, 14N, and 2H NQR tensors in the pentameric clusters, which are in good agreements with the experiment. The different influences of various hydrogen-bonding interactions types, N-H...N, N-H...O, and O-H...O, were observed on the 17O, 14N, and 2H NQR tensors. Lower values of quadrupole coupling constants and higher values of asymmetry parameters in the crystalline monohydrated cytosine indicate the presence of stronger hydrogen-bonding interactions in the monohydrated form rather than that of crystalline anhydrous cytosine.  相似文献   

10.
Hydrogen bond (HB) interactions are studied in the real crystalline structure of sulfamerazine by density functional theory (DFT) calculations of the electric field gradient (EFG) tensors at the sites of O-17, N-14, and H-2 nuclei. One-molecule (single) and four-molecule (cluster) models of sulfamerazine are created by available crystal coordinates and the EFG tensors are calculated in both models to indicate the influence of HB interactions on the tensors. Directly relate to the experiments, the calculated EFG tensors are converted to the experimentally measurable nuclear quadrupole resonance (NQR) parameters, quadrupole coupling constant (qcc) and asymmetry parameter (ηQ). The evaluated NQR parameters reveal that due to contribution of the target molecule to N–HN and N–HO types of HB interactions, the EFG tensors at the sites of various nuclei are influenced from single model to the target molecule in cluster. Additionally, O2, N4, and H2 nuclei of the target molecule are significantly influenced by HB interactions, consequently, they have the major contributions to HB interactions in cluster model of sulfamerazine. The calculations are performed employing B3LYP method and 6-311++G** basis set using GAUSSIAN 98 suite of program.  相似文献   

11.
A computational study at the level of density functional theory was carried out to characterize the 17O and 2H nuclear quadrupole resonance (NQR) spectroscopy parameters in crystalline aspirin. To include O? H···O and C? H···O hydrogen bonding effects in the calculations, the most probable interacting molecules with the target molecule in the crystalline phase were considered through a pentamer cluster. The NQR calculations were performed with BLYP, B3LYP, and M06 functionals employing 6‐311++G** and Jensen's polarization‐consistent pcJ‐1 basis sets. Linear correlations are observed between the calculated 17O and 2H NQR parameters and the hydrogen bond strengths, suggesting the possibility of estimating hydrogen bonding information from calculated NQR data. Different contributions of various nuclei to hydrogen bonding interactions and observed trends of calculated NQR parameters are well justified by atoms in molecules analyses at the BCPs of these interactions. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

12.
We have presented a systematic experimental investigation of carboxyl oxygen electric-field-gradient (EFG) and chemical shielding (CS) tensors in crystalline amino acids. Three 17O-enriched amino acids were prepared: L-aspartic acid, L-threonine, and L-tyrosine. Analysis of two-dimensional 17O multiple-quantum magic-angle spinning (MQMAS), MAS, and stationary NMR spectra yields the 17O CS, EFG tensors and the relative orientations between the two tensors for the amino acids. The values of quadrupolar coupling constants (CQ) are found to be in the range of 6.70-7.60 MHz. The values of deltaiso lie in the range of 268-292 ppm, while those of the delta11 and delta22 components vary from 428 to 502 ppm, and from 303 to 338 ppm, respectively. There is a significant correlation between the magnitudes of delta22 components and C--O bond lengths. Since C--O bond length may be related to hydrogen-bonding environments, solid-state 17O NMR has significant potential to provide insights into important aspects of hydrogen bonds in biological systems.  相似文献   

13.
Hydrogen bonding in crystalline 3,5-pyridine dicarboxylic acid has been studied by (2)H, (14)N, and (17)O nuclear quadrupole resonance. The (2)H and (17)O data show the presence of two distinct hydrogen bonds, a "normal" O-H···O bond and a short, strong N···H···O bond, with significantly different NQR parameters. In the latter, the temperature variation of the (14)N nuclear quadrupole resonance (NQR) parameters is related to the phonon-driven proton transfer in the N···H···O hydrogen bond. The temperature dependence of the N···H and H···O distances in the N···H···O hydrogen bond is extracted from the (14)N NQR data.  相似文献   

14.
We have presented an experimental investigation of the oxygen-17 chemical shielding (CS) and electric-field-gradient (EFG) tensors for alpha-COOH groups in polycrystalline amino acid hydrochlorides. The 17O CS and EFG tensors including the relative orientations between the two NMR tensors are determined in [17O]-L-phenylalanine hydrochloride and [17O]-L-valine hydrochloride by the analysis of the 17O magic-angle-spinning (MAS) and stationary NMR spectra obtained at 9.4, 11.7, 16.4, and 21.8 T. The quadrupole coupling constants (CQ) and the span of the CS tensors are found to be 8.41-8.55 MHz and 7.35-7.41MHz, and 548-570 ppm and 225-231 ppm, for carbonyl and hydroxyl oxygen atoms, respectively. Extensive quantum chemical calculations using density functional theory (DFT) have been also carried out for a hydrogen-bonding model. It is demonstrated that the behavior of the dependence of hydrogen-bond distances on 17O NMR tensors for the halogen ions is different from those for the water molecule.  相似文献   

15.
Metal NMR shielding and electric‐field gradient (EFG) tensors are examined by quantum‐chemical calculations for a set of 14 titanium(IV) complexes. Benchmarks are performed for titanocene chlorides that have been characterized recently by solid‐state NMR experiments, focusing on the dependence of TiIV NMR parameters on the computational model in terms of the choice of the density functional, and considering molecular clusters versus infinite‐periodic solid. Nearest‐neighbor and long‐range effects in the solid state are found to influence NMR parameters in systems without spatially extended ligands. Bulky ligands increase the fraction of local structure and bonding information encoded in the EFG tensors by reducing intermolecular interactions. Next, Ti shielding constants and EFG tensors for a variety of olefin (co)polymerization catalysts are analyzed in terms of contributions from localized molecular orbitals representing Lewis bonds and lone pairs. Direct links between the observed theoretical trends and the local bonding environment around the Ti metal center are found. A specific dependence of the Ti EFG tensors on the exact arrangement and type of surrounding bonds is demonstrated, providing a basis for further studies on solid‐supported titanium catalytic systems.  相似文献   

16.

Abstract  

Density functional theory (DFT) calculations were performed to determine boron-11 and nitrogen-14 nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) spectroscopy parameters in the three most stable B24N24 fullerenes for the first time. The considered samples were first allowed to relax entirely, and then the NMR and NQR calculations were performed on the geometrically optimized models. The calculations of the 11B and 14N nuclear magnetic shielding tensors and electric field gradient tensors employed the Gaussian 98 software implementation of the gauge-including atomic orbital (GIAO) method using the Becke3, Lee-Yang-Parr (B3LYP) DFT level and 6-311G** and 6-311++G** standard basis sets in each of the three optimized forms, and converted the results to experimentally measurable NMR parameters.The calculated NMR chemical shieldings of the three cages show significant differences, providing a way to identify these clusters. The evaluated NQR parameters of the 11B and 14N nuclei in the clusters are also reported and discussed.  相似文献   

17.
We report solid-state 17O NMR determination of the 17O NMR tensors for the keto carbonyl oxygen (O6) of guanine in two 17O-enriched guanosine derivatives: [6-17O]guanosine (G1) and 2',3',5'-O-triacetyl-[6-17O]guanosine (G2). In G1.2H2O, guanosine molecules form hydrogen-bonded G-ribbons where the guanine bases are linked by O6...H-N2 and N7...H-N7 hydrogen bonds in a zigzag fashion. In addition, the keto carbonyl oxygen O6 is also weakly hydrogen-bonded to two water molecules of hydration. The experimental 17O NMR tensors determined for the two independent molecules in the asymmetric unit of G1.2H2O are: Molecule A, CQ=7.8+/-0.1 MHz, etaQ=0.45+/-0.05, deltaiso=263+/-2, delta11=460+/-5, delta22=360+/-5, delta33=-30+/-5 ppm; Molecule B, CQ=7.7+/-0.1 MHz, etaQ=0.55+/-0.05, deltaiso=250+/-2, delta11=440+/-5, delta22=340+/-5, delta33=-30+/-5 ppm. In G1/K+ gel, guanosine molecules form extensively stacking G-quartets. In each G-quartet, four guanine bases are linked together by four pairs of O6...H-N1 and N7...H-N2 hydrogen bonds in a cyclic fashion. In addition, each O6 atom is simultaneously coordinated to two K+ ions. For G1/K+ gel, the experimental 17O NMR tensors are: CQ=7.2+/-0.1 MHz, etaQ=0.68+/-0.05, deltaiso=232+/-2, delta11=400+/-5, delta22=300+/-5, delta33=-20+/-5 ppm. In the presence of divalent cations such as Sr2+, Ba2+, and Pb2+, G2 molecules form discrete octamers containing two stacking G-quartets and a central metal ion, that is, (G2)4-M2+-(G2)4. In this case, each O6 atom of the G-quartet is coordinated to only one metal ion. For G2/M2+ octamers, the experimental 17O NMR parameters are: Sr2+, CQ=6.8+/-0.1 MHz, etaQ=1.00+/-0.05, deltaiso=232+/-2 ppm; Ba2+, CQ=7.0+/-0.1 MHz, etaQ=0.68+/-0.05, deltaiso=232+/-2 ppm; Pb2+, CQ=7.2+/-0.1 MHz, etaQ=1.00+/-0.05, deltaiso=232+/-2 ppm. We also perform extensive quantum chemical calculations for the 17O NMR tensors in both G-ribbons and G-quartets. Our results demonstrate that the 17O chemical shift tensor and quadrupole coupling tensor are very sensitive to the presence of hydrogen bonding and ion-carbonyl interactions. Furthermore, the effect from ion-carbonyl interactions is several times stronger than that from hydrogen-bonding interactions. Our results establish a basis for using solid-state 17O NMR as a probe in the study of ion binding in G-quadruplex DNA and ion channel proteins.  相似文献   

18.
Abstract  Density functional theory (DFT) calculations were performed to determine boron-11 and nitrogen-14 nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) spectroscopy parameters in the three most stable B24N24 fullerenes for the first time. The considered samples were first allowed to relax entirely, and then the NMR and NQR calculations were performed on the geometrically optimized models. The calculations of the 11B and 14N nuclear magnetic shielding tensors and electric field gradient tensors employed the Gaussian 98 software implementation of the gauge-including atomic orbital (GIAO) method using the Becke3, Lee-Yang-Parr (B3LYP) DFT level and 6-311G** and 6-311++G** standard basis sets in each of the three optimized forms, and converted the results to experimentally measurable NMR parameters.The calculated NMR chemical shieldings of the three cages show significant differences, providing a way to identify these clusters. The evaluated NQR parameters of the 11B and 14N nuclei in the clusters are also reported and discussed. Graphical abstract     相似文献   

19.
A systematic solid-state 17O NMR study of a series of carboxylic compounds, maleic acid, chloromaleic acid, KH maleate, KH chloromaleate, K2 chloromaleate, and LiH phthalate.MeOH, is reported. Magic-angle spinning (MAS), triple-quantum (3Q) MAS, and double angle rotation (DOR) 17O NMR spectra were recorded at high magnetic fields (14.1 and 18.8 T). 17O MAS NMR for metal-free carboxylic acids and metal-containing carboxylic salts show featured spectra and demonstrate that this combined, where necessary, with DOR and 3QMAS, can yield site-specific information for samples containing multiple oxygen sites. In addition to 17O NMR spectroscopy, extensive quantum mechanical calculations were carried out to explore the influence of hydrogen bonding at these oxygen sites. B3LYP/6-311G++(d,p) calculations of 17O NMR parameters yielded good agreement with the experimental values. Linear correlations are observed between the calculated 17O NMR parameters and the hydrogen bond strengths, suggesting the possibility of estimating H-bonding information from 17O NMR data. The calculations also revealed intermolecular H-bond effects on the 17O NMR shielding tensors. It is found that the delta11 and delta22 components of the chemical shift tensor at O-H and C=O, respectively, are aligned nearly parallel with the strong H-bond and shift away from this direction as the H-bond interaction weakens.  相似文献   

20.
In this paper, we have calculated the nuclear quadrupole resonance (NQR) parameters of the quadrupole nuclei involved in the hydrogen bonds (COH–C and +N–HOC) in the monomer and pentameric cluster of dl-proline by HF and B3LYP methods and basis sets of 6-311+G* and 6-311++G**. These computations are performed on the basis of X-ray diffraction structural data of dl-proline. The results indicate that the calculations including hydrogen-bonding (HB) interactions (in pentamer) are in better agreement with the experimental data than those in which these interactions are neglected (in monomer). The quantum chemical calculations show that the intermolecular hydrogen-bonding interactions play an important role in determination of the NQR parameters of 14N, 2H of group and 17O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号