共查询到20条相似文献,搜索用时 31 毫秒
1.
R32在水平细管内的流动沸腾实验研究 总被引:1,自引:0,他引:1
本文对R32在水平管内的流动沸腾进行了实验研究。实验测试段为内径2 mm的水平光滑不锈钢管,实验的蒸发温度为15℃,流量密度为100 kg/(m~2·s),热流密度为6~24 kW/m~2。通过试验获得R32的流动沸腾换热系数,同时与R134a和HFO1234yf进行比较。结果发现R32的传热系数是HFO1234yf换热系数的1~2倍。同时利用现有的公式对R32和HFO1234yf的换热系数进行了预测,发现这些公式还存在欠缺,需要进一步的改进。 相似文献
2.
3.
研究非共沸混合工质R32/R134a(质量比,25%/75%)在水平微尺度通道内流动沸腾换热规律。在各种工况下进行了非共沸混合工质R32/R134a在水平微尺度管道内流动沸腾换热的实验,考察了质量流量G、热流密度q、质量干度x对微尺度通道内流动沸腾换热系数的影响。研究表明:在热流密度、质量流量都较低的区域,对细管道,换热系数与热流密度的关联度较大;而对微管道,换热系数受影响的因素比较多,并在干度为0.6时出现"干涸"现象,使得换热系数急剧下降。在质量流量高的区域,对细管道,热流密度对换热系数的影响很小;而对微尺度管道,当干度为0.06时换热系数发生转变,随质量干度的增加先减小后增大,热流密度增大到一定的阶段后,换热系数不再随热流密度变化。 相似文献
4.
高功率电子芯片的安全运行需要高效的散热技术。流动沸腾换热由于高换热系数受到广泛关注。为精确模拟微通道内流动沸腾复杂两相流过程,本文提出了耦合VOF方法的在相界面处迭代求解能量源项的相变模型。针对单微柱微通道内流动沸腾换热过程进行了数值模拟,分析了瞬态两相流过程及温度场演变规律,查明了热流密度及进口过冷度的影响机制。结果表明,由于局部蒸汽的覆盖,不同工况下微通道内流动沸腾存在热阻的转折点,高热流密度对应更高的气泡生长速度和成核面积,高过冷度会延缓转折点,但整体热阻将升高。 相似文献
5.
6.
7.
8.
9.
10.
11.
为模拟偏滤器水冷模块微纳米结构化表面的传热特性,结合微纳表面可视化微观观察实验数据,在现有气泡参数模型的基础上,对接触角、气泡脱离直径、气泡脱离频率、汽化核心密度等参数模型进行修改,提出可模拟微纳表面过冷流动沸腾传热效果的计算模型。用该模型对压力为4MPa、速度为10m·s-1、进口温度为423K的偏滤器水冷结构中的过冷流动沸腾进行计算,得到常规水冷通道与微纳表面水冷通道各结构的温度与气相体积分布。计算结果表明,微纳表面的平均传热系数提高约一倍;在无氧铜与铬锆铜的许用温度范围内,微纳表面通道偏滤器承受的稳态热流密度可达14MW·m-2。 相似文献
13.
通过高速CCD可视化实验,在气体表观速度0.01~26.5m/s,液体表观速度0.01~1.2m/s范围内,对内径为1.931mm垂直向上圆管内液氮流动沸腾的流型特性进行了研究.所观测的主要流型为:泡状流,弹状流,搅拌流和环状流.并绘制了流型图,发现环状流占了大部分的区域,干度大于0.15的区域基本上都是环状流.分析了流量对流型转变的影响,流量越大,相应的流型转变干度越低,而且流量大于820kg/m2s时,没有发现泡状流.通过与相同水力直径的空气-水的流型图比较,发现本文中的弹状流区域要小很多.通用的流型转变模型预测结果与实验结果相差较大. 相似文献
14.
15.
16.
17.
18.
流体在微细多孔介质中的流动阻力研究 总被引:2,自引:0,他引:2
本文对空气和水流过烧结微细多孔介质内部的流动阻力进行了实验研究和数值模拟,分析不同颗粒直径条件下摩擦因子与等效雷诺数的关系.结果表明:对于水,实验及数值模拟得到的摩擦因子与经验公式符合很好.对于空气,当颗粒直径为200μm和125 μm时,由于可压缩性的影响,摩擦因子略大于经验公式结果.当颗粒直径为90μm和40 μm时,实验及考虑速度滑移得到的摩擦因子小于经验公式结果.因此,当颗粒平均直径小于90 μm时,空气在微细多孔介质中的流动需要考虑稀薄气体效应. 相似文献
19.