首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用热解-光电离飞行时间质谱方法,在线研究了不同酸性强度的HUSY沸石催化剂对聚丙烯(PP)催化热解的影响.将HUSY以不同程度的氨气毒化处理,得到不同酸强度和酸位点数量的催化剂,在线获得PP与酸性强度不同HUSY在不同热解温度下的光电离质谱图,通过程序升温热解实验,获得PP与酸性强度不同的HUSY经热解后产物随温度升高的变化趋势.结果表明PP热解产物的生成温度、选择性和转化率均与HUSY的酸性有较强关联.  相似文献   

2.
本文对纤维素和甲醇在不同金属氧化物改性的ZSM5催化剂作用下共催化快速热解实现一步制备可再生对二甲苯的过程进行了研究.结果表明,镧改性的ZSM5催化剂是生产生物基对二甲苯的有效催化剂.对二甲苯的选择性和产率主要由催化剂酸性、反应温度和甲醇含量决定.在20%La_2O_3-ZSM5(80)催化剂作用下,纤维素与33wt%甲醇共催化快速热解获得对二甲苯的最高收率和对二甲苯/二甲苯的最高比率分别为14.5 C-mol%和86.8%.本文详细研究了催化热解过程中催化剂的失活,基于产物的分析和催化剂的表征提出了由纤维素制备对二甲苯的可能反应途径.  相似文献   

3.
基于商业V_2O_5-WO_3/TiO_2脱硝催化剂,通过将催化剂浸渍在砷标准溶液中,制备了砷中毒催化剂。用不同浓度FeCl_3溶液清洗,通过活性测试并结合X射线衍射(XRD)、比表面积测定(BET)、原位漫反射傅里叶变换红外光谱(in situ DRIFTS)的表征技术对As中毒催化剂再生前后的微观结构、表面酸性变化、脱硝活性进行了对比研究,探索FeCl_3对砷中毒催化剂的再生效果与机理。结果表明,20 mg/mL的FeCl_3溶液对催化剂的再生效果较好,恢复了催化剂被砷堵塞的小孔,增加了比表面积和孔体积,降低了平均孔径,同时增强了催化剂表面的Bronsted酸和Lewis酸酸位的强度和酸量,延长了催化剂的吸附饱和时间,350-400℃时催化剂的脱硝活性恢复到80.07%以上。  相似文献   

4.
本文对纤维素和甲醇在不同金属氧化物改性的ZSM5催化剂作用下共催化快速热解实现一步制备可再生对二甲苯的过程进行了研究. 结果表明,镧改性的ZSM5催化剂是生产生物基对二甲苯的有效催化剂. 对二甲苯的选择性和产率主要由催化剂酸性、反应温度和甲醇含量决定. 在20%La2O3-ZSM5(80)催化剂作用下,纤维素与33wt%甲醇共催化快速热解获得对二甲苯的最高收率和对二甲苯/二甲苯的最高比率分别为14.5 C-mol%和86.8%. 本文详细研究了催化热解过程中催化剂的失活,基于产物的分析和催化剂的表征提出了由纤维素制备对二甲苯的可能反应途径.  相似文献   

5.
基于铅在中国燃煤和MSW焚烧烟气中的特点,采用静态N_2物理吸附、NH_3化学吸附、程序升温表面反应、傅里叶变换红外光谱和催化剂活性评价的方法,研究了PbO对1 wt.%V_2O_5/TiO_2催化剂NH_3选择性催化还原NO的影响.结果表明,PbO使SCR催化剂活性降低.对于燃煤锅炉,PbO对V_2O_5/TiO_2催化剂的影响可以忽略不计;对于MSW焚烧炉,PbO是使V_2O_5/TiO_2催化剂失活的重要铅化合物.Pb覆盖在TiO_2表面上,与V活性位覆盖在TiO_2表面上的方式类似.催化剂的失活主要是由于PbO中和了催化剂表面Brφnsted酸性位的酸性,Brφnsted酸性位对于NH_3的吸附和活化起重要作用.  相似文献   

6.
二噁英是一类含氯挥发性有机污染物,具有环境持久性、生物蓄积性和长期残留性等特性,可造成致畸、致癌和致突变等危害。铁矿烧结过程中含氯前驱物在碱性环境下通过Ullman反应或经飞灰中某些催化性成分催化生成二噁英;碳、氢、氧和氯等元素可通过基元反应“从头合成”(de novo)二噁英,是二噁英最主要的排放源之一。物理吸附技术仅能实现污染物由气相向固相转移,加重了飞灰处理负担,并存在特定温度条件下(250~350 ℃)二噁英再生风险。催化降解技术能彻底矿化有机污染物,生成CO2,H2O和HCl/Cl2,是一种避免二次污染高效节能、成本较低的方法。但由于传统催化剂活性温度区间较高,无法达到烧结烟气末端温度。选择合适的催化剂,提高催化剂低温降解活性,能实现低温、高效催化降解烧结烟气中有机污染物的目标。过渡金属Ce具有稀土金属的4f轨道配位效应和路易斯酸活性位点,对有机污染物C-H和C-Cl键活化起到至关重要的作用,掺杂过渡金属、调整活性组分比例可进一步提高铈基催化剂的抗中毒性能和降解活性。因此,本文采用溶胶凝胶法制备Ce-V-Ti复合催化剂,以氯苯为二噁英模型分子,研究了不同活性组分比例对铈基催化剂降解烧结烟气中二噁英活性影响。利用X射线衍射仪、比表面积及孔径测定仪和拉曼光谱仪对催化剂进行表征,研究Ce-V-Ti催化剂的相组成、比表面积和分子结构,并推测铈基催化剂的降解机理。结果表明,在实验室模拟烧结烟气气氛下,反应条件为GHSV=30 000 h-1、20%O2和100 ppm CB,当Ce质量分数为15%、V质量分数为2.5%时,Ce-V-Ti催化降解氯苯活性最高,150 ℃能达到约60%转换率,300 ℃能实现95%降解率。催化剂载体与活性组分之间化学交互作用,影响催化剂的降解活性。通过光谱学分析发现,Ce-V-Ti催化剂XRD图谱主要为锐钛矿相的TiO2,比表面积为95.53 m2·g-1,孔容0.29 cm3·g-1,孔径6.5 nm。表面官能团主要为C-H基团和H-O官能团。引入V作为Ce-Ti催化剂助剂,促进了Ce元素固溶,增加了催化剂表面氧空位,有利于提升催化剂降解活性。通过对催化剂机理分析,认为反应物首先通过发生亲核取代而垂直吸附于催化剂表面,再被活性组分Ce活化,活化后氯苯分子被表面活性氧分解矿化。同时,过渡金属V的低价态氧化物发生氧化反应,促进Ce的还原反应。  相似文献   

7.
二噁英是一类含氯挥发性有机污染物,具有环境持久性、生物蓄积性和长期残留性等特性,可造成致畸、致癌和致突变等危害。铁矿烧结过程中含氯前驱物在碱性环境下通过Ullman反应或经飞灰中某些催化性成分催化生成二噁英;碳、氢、氧和氯等元素可通过基元反应"从头合成"(de novo)二噁英,是二噁英最主要的排放源之一。物理吸附技术仅能实现污染物由气相向固相转移,加重了飞灰处理负担,并存在特定温度条件下(250~350℃)二噁英再生风险。催化降解技术能彻底矿化有机污染物,生成CO_2, H_2O和HCl/Cl_2,是一种避免二次污染高效节能、成本较低的方法。但由于传统催化剂活性温度区间较高,无法达到烧结烟气末端温度。选择合适的催化剂,提高催化剂低温降解活性,能实现低温、高效催化降解烧结烟气中有机污染物的目标。过渡金属Ce具有稀土金属的4f轨道配位效应和路易斯酸活性位点,对有机污染物C—H和C—Cl键活化起到至关重要的作用,掺杂过渡金属、调整活性组分比例可进一步提高铈基催化剂的抗中毒性能和降解活性。因此,本文采用溶胶凝胶法制备Ce-V-Ti复合催化剂,以氯苯为二噁英模型分子,研究了不同活性组分比例对铈基催化剂降解烧结烟气中二噁英活性影响。利用X射线衍射仪、比表面积及孔径测定仪和拉曼光谱仪对催化剂进行表征,研究Ce-V-Ti催化剂的相组成、比表面积和分子结构,并推测铈基催化剂的降解机理。结果表明,在实验室模拟烧结烟气气氛下,反应条件为GHSV=30 000 h~(-1)、 20%O_2和100 ppm CB,当Ce质量分数为15%、 V质量分数为2.5%时, Ce-V-Ti催化降解氯苯活性最高, 150℃能达到约60%转换率, 300℃能实现95%降解率。催化剂载体与活性组分之间化学交互作用,影响催化剂的降解活性。通过光谱学分析发现, Ce-V-Ti催化剂XRD图谱主要为锐钛矿相的TiO_2,比表面积为95.53 m~2·g~(-1),孔容0.29 cm~3·g~(-1),孔径6.5 nm。表面官能团主要为C—H基团和H—O官能团。引入V作为Ce-Ti催化剂助剂,促进了Ce元素固溶,增加了催化剂表面氧空位,有利于提升催化剂降解活性。通过对催化剂机理分析,认为反应物首先通过发生亲核取代而垂直吸附于催化剂表面,再被活性组分Ce活化,活化后氯苯分子被表面活性氧分解矿化。同时,过渡金属V的低价态氧化物发生氧化反应,促进Ce的还原反应。  相似文献   

8.
为了深入了解生物柴油在ZSM-5沸石上的催化反应机理,在常压的流动反应器中进行了生物柴油代用品丁酸甲酯在氢型ZSM-5(HZSM-5)催化剂上的热解和催化热解. 热解产物使用气相色谱-质谱法定性和定量测量. 动力学模型和实验表明,气相中氢提取反应是热解过程中丁酸甲酯分解的主要途径,但在HZSM-5上,丁酸甲酯则主要通过解离生成烯酮和甲醇消耗;与无催化反应相比,丁酸甲酯在HZSM-5上的初始分解温度降低了约300 K. 并且通过Arrhenius方程获得了在催化热解和均相热解条件下丁酸甲酯消耗的表观活化能. 明显降低的表观活化能证实了HZSM-5对丁酸甲酯热解的催化性能. 此外催化剂的活化温度对HZSM-5的某些催化性能具有一定的影响. 该研究对进一步的实际生物柴油燃料的催化燃烧具有一定的指导意义.  相似文献   

9.
为了深入了解生物柴油在ZSM-5沸石上的催化反应机理,在常压的流动反应器中进行了生物柴油代用品丁酸甲酯在氢型ZSM-5(HZSM-5)催化剂上的热解和催化热解.热解产物使用气相色谱-质谱法定性和定量测量.动力学模型和实验表明,气相中氢提取反应是热解过程中丁酸甲酯分解的主要途径,但在HZSM-5上,丁酸甲酯则主要通过解离生成烯酮和甲醇消耗;与无催化反应相比,丁酸甲酯在HZSM-5上的初始分解温度降低了约300 K.并且通过Arrhenius方程获得了在催化热解和均相热解条件下丁酸甲酯消耗的表观活化能.明显降低的表观活化能证实了 HZSM-5对丁酸甲酯热解的催化性能.此外催化剂的活化温度对HZSM-5的某些催化性能具有一定的影响.该研究对进一步的实际生物柴油燃料的催化燃烧具有一定的指导意义.  相似文献   

10.
研究了在超临界乙醇中、氢气存在下,一系列金属-酸双功能催化剂的酸性、孔径大小、负载的金属对热解木质素加氢裂解过程的影响.制备并采用N2等温吸附和BET比表面、X射线衍射、NH3-程序升温脱附技术对催化剂进行表征.实验结果表明催化剂酸性增强可促进热解木质素的缩聚反应,从而产生大量的焦炭和水,导致其液化效率降低.微孔催化剂比介孔催化剂孔径小,与强酸共同作用会导致热解木质素裂解生成更多的小分子气体.在催化剂上负载金属Ru可有效地抑制热解木质素的缩聚反应,促进其裂解液化.  相似文献   

11.
本文在流化床上对玉米芯进行了快速热解制取生物油的试验研究.首先在非催化条件下考察了温度、气体流量、床高和物料粒径对热解产物产率的影响,得到了制取生物油的最优工况.在此工况下进行了催化热解试验,研究了FCC催化剂对热解产物产率和生物油品质的影响.结果表明,最优工况下生物油产率为56.8%.同未加催化剂相比,FCC催化剂的存在使得生物油中油组分和焦炭的产率降低,不凝结气体、水分和焦的产率增加.分级冷凝系统的应用较好的实现了重油、轻油和水的分离.对催化条件下第二级冷凝器收集的生物油分析表明,其油组分的氧含量和高位热值分别为13.64%和36.7 MJ/kg,具有很好的应用前景.  相似文献   

12.
采用溶胶 凝胶法合成出具有Keggin结构的纳米复合杂多酸H3 PW12 O40 /SiO2 催化材料 ,用IR ,UV ,XRD ,TEM等手段研究了其结构形态 ;并考察了纳米催化剂对合成丙烯酸正丁酯的应用研究。结果表明 ,H3 PW12 O40 /SiO2 催化剂平均粒径为 4 0nm ,是一种非晶态复合物 ,H3 PW12 O40 和SiO2 之间存在着强烈的化学作用 ,纳米粒子对合成丙烯酸正丁酯有很好的催化活性 ,其最佳催化条件为 :酸醇摩尔比为 1∶1 2 ,催化剂用量为酸质量的 10 % ,反应温度为 90~ 96℃ ,反应时间 5h ,酯化率达到 94 37% ,酯收率为 91 2 %。这与纳米粒子具有较强的酸表面中心 ,高的比表面积以及“假液相”行为有关  相似文献   

13.
实验研究了反应气流中SO_2对低浓度甲烷在Cu/γ-Al_2O_3颗粒上催化燃烧特性的影响规律,考察了硫在催化剂上的累积作用,探讨了催化剂硫中毒的原因。研究表明:SO_2存在时,燃烧反应时Cu/γ-Al_2O_3催化剂发生硫中毒,且中毒效应随着SO_2浓度的增加而加深;经预硫化处理的催化剂的活性有所下降,且低温段硫中毒效应更为明显,较高的反应温度能够使生成的硫酸盐发生分解,减少对催化剂活性的影响;造成Cu/γ-Al_2O_3催化剂硫中毒的原因是催化剂内有硫酸盐的生成,减少了活性位点及比表面积,阻碍了活性位点对甲烷分子的吸附,从而降低了催化剂活性。  相似文献   

14.
水煤气变换反应是工业上用于提纯H2以及去除CO的重要化学反应。为克服水煤气变换反应低温下动力学的限制,本文建立一种低温等离子体协同铜基催化剂催化水煤气变换反应体系,使得反应能在120℃时进行。通过研究不同载体(Al2O3、CeO2、TiO2、SiO2、SAPO-34)负载铜催化剂对等离子体催化的影响后发现,当CuOx/CeO2催化剂同等离子体耦合时,表现出最佳的催化活性,CO转化率57%,氢气产率42%。研究表明,更好的催化性能归因于CuOx/CeO2催化剂表面的氧空位以及数量众多的Cu活性位点,有利于吸附反应物,促使反应的进行。但是载体的比表面积、颗粒尺寸、酸性位点数量,介电常数并不是影响本文实验条件下低温等离子体催化WGS反应的主要因素。  相似文献   

15.
采用液态离子交换法制备了不同负载量的镍改性ZSM-5分子筛催化剂,并考察了上述催化剂的微观结构和物理化学特性及其在NH3-SCR反应中的催化性能。结果表明:在负载量<10.9%时镍在分子筛中具有高度的分散性,而随着镍负载量的进一步增加,分子筛表面开始出现较大的NiO颗粒;镍元素只以+2价存在于分子筛催化剂中;在NH3-SCR反应中,镍负载量低于14.9%时,增加镍负载量将提高催化剂的低温活性;当反应温度超过300℃时,高温催化中心开始起作用,但随镍负载量的增加,高温活性开始下降时的温度逐渐降低。  相似文献   

16.
采用浸渍法制备了La_2O_3、Ce_2O_3和Co_2O_3等金属氧化物部分替代V_2O_5的氧化物-MoO_3-TiO_2型催化剂,并进行了理化性能和催化活性表征。结果表明:替代型催化剂的比表面积与钒型催化剂差别不大。在NH_3-SCR反应中,镧型和铈型催化剂不仪低温活性较高而且NO_x净化率在500℃时才开始衰减,具有最宽的活性温度窗口;钴型催化剂虽然低温活性最好,但其NO_x净化率在400℃即开始衰减,导致其活性温度窗口较窄,但还是比钒型催化剂宽。此外,反应温度是影响HC和CO排放变化的主要因素,而催化剂种类对其影响较小。1×10~5 h~(-1)以下时,不同空速对NO_x净化率影响较小;而空速达到3×10~5 h~(-1)时,NO_x净化率显著下降。  相似文献   

17.
采用共沉淀法制备一系列Fe_(1-x)Mn_xO_z(x为Mn物质的量比,x=0、0.1、0.3、0.5)磁性催化剂,考察Mn掺杂对γ-Fe_2O_3催化剂低温SCR脱硝活性的影响规律。结果表明,Mn掺杂能显著提高γ-Fe_2O_3的低温SCR脱硝活性,并拓宽其活性温度窗口;Fe_(0.7)Mn_(0.3)O_z催化剂的低温SCR脱硝活性最高,在125~200℃其NO_x转化率约为100%。N_2吸附及XRD分析结果表明,Mn的掺杂能优化γ-Fe_2O_3催化剂的孔隙结构及孔径分布,增大其比表面积和比孔容,并与催化剂中铁氧化物相互作用形成良好固溶体,从而提高γ-Fe_2O_3催化剂的低温SCR活性。  相似文献   

18.
对于稻壳、树叶、棉花杆、玉米杆四种生物质焦,通过压汞法测量了其在大孔和部分中孔范围内的孔隙结构,发现热解温度、热解保持时间、热解快/慢速都会影响着焦样的比表面积和平均孔径。四种生物质中,树叶焦样的比表面积最大,玉米杆的比表面积最小;稻壳焦样的平均孔径最小,玉米杆的平均孔径最大。不同生物质焦样的孔径分布规律有很大不同。热解温度、热解速度和热解保持时间对孔径分布规律的影响不大,决定孔径分布规律的是生物质本身。在中孔和大孔的范围内,四种生物质焦样的孔径分布曲线都呈现出双峰结构。  相似文献   

19.
为克服光催化材料可见光利用效率低的缺陷, 通过三聚氰胺高温缩聚的方法合成了石墨型氮化碳(g-C3N4)材料。采用XRD, SEM, UV-Vis技术对氮化碳材料的微观结构和光学性能进行了表征, 并通过降解罗丹明B溶液研究了缩聚温度和不同光源对光催化效率的影响。结果表明, 合成的氮化碳层片状结构保存良好, 尽管材料表面在高温下断裂形成了不规则的块体颗粒;随着煅烧温度的升高, 催化剂在紫外光和可见光部分的吸收都显著增强, 这可能是由于材料表面的岩石状块体颗粒提高了材料的比表面积, 同时降低了光的反射又提高了对光的吸收。在罗丹明B的光降解测试中, 催化剂在可见光和太阳光照射下均表现出了良好的催化效果, 缩聚温度为580 ℃时效果最好, 分别为94.8%(60 min)和91.1%(90 min)。该方法制备的石墨型氮化碳催化剂对利用清洁能源进行环境净化应用具有极大的潜在价值。  相似文献   

20.
实验研究了水蒸气对低浓度甲烷在Cu/γ-Al_2O_3催化剂上燃烧特性的影响规律,考察了低浓度甲烷转化率随水蒸气浓度的变化规律、催化剂的耐水稳定性及再生特性,通过催化剂的微观结构观测探讨了水蒸气对低浓度甲烷催化燃烧的抑制机理。结果表明,随着水蒸气浓度的增加,催化剂的催化活性逐渐降低,空气吹扫可使催化剂活性部分恢复;水蒸气存在的情况下,催化剂表面存在烧结,但烧结的程度受到温度和蒸汽浓度两方面的作用。水蒸气抑制作用的原因是水分子吸附在催化剂表面,占据活性位,并生成表面羟基,阻碍甲烷与催化剂的接触。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号