首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PEDOT:PSS is a high-conductivity hole-transporting polymer that is widely used in polymer and perovskite photovoltaic devices, as well as in a host of other antistatic applications. Here we show that modification of PEDOT:PSS inks using ternary solvents and by the addition of small amounts of a high molecular weight polymer make it possible to deposit highly uniform thin films via ultrasonic spray coating. Such films can be deposited using a single pass in the wet phase without the use of surfactants; a process that greatly simplifies their deposition. Using this technique we create films having thickness and roughness comparable to that of spin coated films, whilst properties such as the conductivity and stability can be improved.  相似文献   

2.
PEDOT:PSS coated Te (PCTe) nanorod/PEDOT:PSS composite films were prepared by a drop-casting technique. H2SO4 treatment was employed to enhance thermoelectric (TE) properties of the composite films. The addition of PCTe nanorods increased both the electrical conductivity and the Seebeck coefficient of the composite films. An optimized power factor of 141.9 μW/mK2 was obtained for the film containing 90 wt% PCTe nanorods treated with 12 M H2SO4 at room temperature, which was 2.75 times as high as that of the untreated composite film, corresponding to the electrical conductivity and Seebeck coefficient of 204.6 S/cm and 83.27 μV/K, respectively. XPS and GIWAXS analysis revealed the removal of insulating PSS units and the rearrangement of PEDOT chains after the H2SO4 treatment. Finally, a 9-leg TE generator prototype was fabricated using the optimized composite film. The maximum output power and area output power density produced from the prototype were 47.7 nW and 57.2 μW/cm2, respectively, at the temperature difference of 40 K.  相似文献   

3.
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a promising alternative transparent electrode to replace conventional indium tix oxide (ITO) for flexible and stretchable electronics. For their applications in optoelectronic devices, realizing both high conductivity and transmittance for the films is of great necessity as a suitable high performance transparent electrode. Here, we demonstrate simultaneously enhanced electrical and optical properties of PEDOT:PSS films prepared on chitosan bio-substrates by using an organic surface modifier, 11-aminoundecanoic acid (11-AA). The sheet resistance of PEDOT:PSS films decreases from 1120.8 to 292.8 Ω/sq with an increase in a transmittance from 75.9 to 80.4% by 11-AA treatment on the chitosan films. The functional groups of 11-AA effectively enhance the adhesion property at the interface between the chitosan substrate and PEDOT:PSS by forming strong interfacial bondings and decrease insulating PSS from PEDOT:PSS films. The wearable heater devices and on-skin sensors based on the 11-AA-treated PEDOT:PSS on the chitosan bio-substrates are successfully fabricated, showing the excellent thermal and sensing performances. The 11-AA surface-modification approach for highly conductive PEDOT:PSS on chitosan bio-substrates presents a great potential for applications toward transparent, flexible and stretchable electronics.  相似文献   

4.
We studied the effect of Au nanoparticles (NPs) on optical properties of composite films of poly(3,4-ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT:PSS) mixed with Au NPs of 20, 40 and 60 nm in diameter by surface plasmon resonance (SPR) spectroscopy. The excitation wavelength of SPR redshifts with increasing the concentration of Au NPs in the Au/PEDOT:PSS composite films. The SPR spectra were simulated by using transfer matrix method (TMM) and effective medium approximation (EMA). The SPR wavelength redshift was ascribed to the film thickness increase of Au/PEDOT:PSS composites rather than effective permittivity variation of the composite films induced with Au NPs inclusion.  相似文献   

5.
The directional dependence of electron blocking by poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is investigated in organic photovoltaic devices. In a conventional OPV architecture we find that a doped interlayer forms between poly(3-hexylthiophene) (P3HT) and the PSS-rich top layer of spin-coated PEDOT:PSS films. In an inverted OPV architecture, we find no mixing between PEDOT:PSS and P3HT, which is due to the lower concentration of PSS in bulk PEDOT:PSS than is found in the PSS-rich top layer. Through electrical measurements of conventional and inverted photovoltaic devices we show that the interlayer is necessary for PEDOT:PSS to be electron blocking. This result implies that PEDOT:PSS is not intrinsically electron blocking and that its directional anisotropy must be considered when comparing the advantages and disadvantages of conventional and inverted architecture photovoltaic devices.  相似文献   

6.
Electron microscopy studies are used to explore the morphology of thin poly(3,4‐ethylenedioxythiophene) and polystyrene sulfonate acid (PEDOT:PSS) films. The figures show that the films are composed of grains with diameters in the range of about 50 nm. Energy dispersive X‐ray spectroscopy analysis reveals that individual grains have a PEDOT‐rich core and a PSS‐rich shell with a thickness of about 5–10 nm. Atomic force microscopy (AFM) is then used to analyze the topography of fracture surfaces of ruptured PEDOT:PSS tensile specimens. These AFM scans also show that the films are composed of grains dispersed in a matrix. The investigations presented herein yield a picture of PEDOT:PSS morphology with unprecedented clarity.  相似文献   

7.
We report on conductivity and optical property of three different types of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) films [pristine PH1000 film (PH1000-p), with 5 wt.% ethylene glycol additive (PH1000-EG) and with sulfuric acid post-treatment (PH1000-SA)] before and after polyethylenimine (PEI) treatment. The PEI is found to decrease the conductivity of all the PEDOT:PSS films. The processing solvent of 2-methoxyethanol is found to significantly enhance the conductivity of PH1000-p from 1.1 up to 744 S/cm while the processing solvent of isopropanol or water does not change the conductivity of PH1000-p much. As for the optical properties, the PEI treatment slightly changes the transmittance and reflectance of PH1000-p and PH1000-EG films, while the PEI leads to an substantial increase of the absorptance in the spectral region of 400–1100 nm of the PH1000-SA films. Though the optical property and conductivity of the three different types of PEDOT:PSS films vary with the PEI treatment, the treated PEDOT:PSS films exhibit similar low work function. We demonstrate solar cells with a simple device structure of glass/low-WF PEDOT:PSS/P3HT:ICBA/high-WF PEDOT:PSS cells that exhibit good performance with open-circuit voltage of 0.82 V and fill factor up to 0.62 under 100 mW/cm2 white light illumination.  相似文献   

8.
The electrical conductivity of poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films was significantly improved without losing the optical transparency by treating the films with solution of 2-Methylimidazole in ethanol. The maximum electrical conductivity of such a thin film reached 930 S cm−1, more than 1150 order of magnitude higher than that of pure PEDOT:PSS film. The mechanism of conductivity enhancement of treated thin PEDOT:PSS films was explored by atomic force microscopy (AFM) and UV/VIS spectrophotometer. The AFM scans show that the surface of the 2-Methylimidazole treated PEDOT:PSS layer is smoother than that of the pristine PEDOT:PSS thin film. Improvement in the morphology, electrical and optical properties of PEDOT:PSS films makes them highly suitable for numerous applications in optoelectronic devices.  相似文献   

9.
We report high performance solution processed conductive inks used as contact electrodes for printed organic field effect transistors (OFETs). Poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) electrodes show highly improved very low sheet resistance of 65.8 ± 6.5 Ω/square (Ω/□) by addition of dimethyl sulfoxide (DMSO) and post treatment with methanol (MeOH) solvent. Sheet resistance was further improved to 33.8 ± 8.6 Ω/□ by blending silver nanowire (AgNW) with DMSO doped PEDOT:PSS. Printed OFETs with state of the art diketopyrrolopyrrole-thieno[3,2-b]thiophene (DPPT-TT) semiconducting polymer were demonstrated with various solution processable conductive inks, including bare, MeOH treated PEDOT:PSS, single wall carbon nanotubes, and hybrid PEDOT:PSS-AgNW, as the source and drain (S/D) electrode by spray printing using a metal shadow mask. The highest field effect mobility, 0.49 ± 0.03 cm2 V−1 s−1 for DPPT-TT OFETs, was obtained using blended AgNW with DMSO doped PEDOT:PSS S/D electrode.  相似文献   

10.
《Organic Electronics》2014,15(6):1126-1130
In the printed electronics industry, in order to produce conducting layers of suitably low resistance (<0.015 Ω cm) PEDOT:PSS solutions are attractive as transparent conductors. The wet film is currently heated using conventional convection ovens at temperatures of 120–140 °C for several minutes. Near infrared (NIR) radiation curing is shown to reduce the minimum drying time from 240 s in a conventional oven (giving 0.014 Ω cm) to 2 s (giving 0.011 Ω cm). Here we show it is the NIR absorbance of the PEDOT:PSS itself that gives rise to the rapid curing and this limits the energy density of NIR used.  相似文献   

11.
In order to improve the conversion efficiency of organic photovoltaic (OPV) cells, nano-patterned poly (3,4-ethylenedioxythiophene) poly (styrenesulfonate) (PEDOT:PSS) was used as a hole transfer layer (HTL). Using nanoimprint lithography, a process that is easily applied to large-area substrates, a spherical array of PEDOT:PSS droplets was formed. The effect of the PEDOT:PSS nanostructure was characterized by optical and electrical measurements. Because the hemispherical array of PEDOT:PSS scatters light efficiently, absorption of the incident light increases when the nanostructured layer is employed. The conversion efficiency of the nano-patterned OPV cells is 25% larger than that of non-patterned OPV cells, due to the increase in short-circuit current (Jsc).  相似文献   

12.
A highly conductive, transparent and uniform poly (3,4-ethylenedioxythiophene):poly (styrenesulfonate) (PEDOT:PSS) film has been developed by dipping treatment with hydriodic acid (HI) solution. The HI-treated PEDOT:PSS film can reach a sheet resistance of 68 Ω per square and a transmittance of 87% at 550 nm. The conductivity enhancement for the HI-treated film is ascribed to the permeation of proton and iodine anion of HI into PEDOT:PSS film, resulting in the separation of PSS and PEDOT chains. The phase separation of PSS and PEDOT can provide more conductive pathways for carriers to improve conductivity of the film. Using the optimized HI-treated PEDOT:PSS film as anode, we have fabricated indium tin oxide (ITO)-free organic light emitting diode (OLED), which shows better performance than the device with ITO as anode. This proves that such PEDOT:PSS film with the dipping treatment by HI solution is a promising alternative to ITO for low cost, transparent and flexible OLED application.  相似文献   

13.
Conducting p-type polymer of poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) has been widely used for organic optoelectronics, particularly as a hole transport layer for organic solar cells. While the aged PEDOT:PSS dispersion impacts device performance, the aging of PEDOT:PSS dispersion have not been well investigated. Moreover, the recovery process of aged (two-year-old) PEDOT:PSS dispersion has not been demonstrated yet. Herein, it is found that aqueous PEDOT:PSS dispersion undergoes extensive phase separation during the aging process, resulting in both nanoscale and macroscale hydrophobic PEDOT-rich agglomerates. When the aged PEDOT:PSS thin film is integrated into P3HT:PCBM organic solar cells, the PEDOT-rich agglomerates trap the photogenerated holes at the PEDOT:PSS/P3HT interface, resulting in poor extraction efficiency in organic solar cells. To recover a hole transport functionality from aged PEDOT:PSS, three different solvents such as isopropyl alcohol (C3H7OH), ethanol (C2H5OH) and methanol (CH3OH) are investigated. Among them, it is found that isopropyl alcohol (IPA) yielded very uniform PEDOT:PSS thin film layer. This is because hydrophobic functional groups of IPA solvent facilitated the preferential solvation of phase separated hydrophobic PEDOT-rich agglomerates. However, when non-optimal concentration of IPA solvents was added into the aged PEDOT:PSS dispersion, the size of PEDOT-rich agglomerates was adversely enlarged. When organic solar cells were fabricated using more than a two-year-old PEDOT:PSS that was treated with IPA solvent, the resulting device performance of organic solar cells was fully recovered and became comparable or better than that of organic solar cells fabricated with fresh PEDOT:PSS.  相似文献   

14.
Herein, we report about an efficient and stable organic photovoltaic that uses a poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) and molybdenum oxide (MoOX) mixture for the anode interfacial layer, and that can reach 4.43% power conversion efficiency (PCE) under AM1.5 conditions. Utilizing PEDOT:PSS:MoOX (1:1), the shelf lifetime of poly(3-hexylthiophene) (P3HT), and indene-C60 bisadduct (ICBA)-based solar cells without encapsulation, can be realized with only a 25% deterioration after 672 h of storage in air. Furthermore, we compare the photovoltaic performance of the P3HT:ICBA-based organic photovoltaic with PEDOT:PSS, and PEDOT:PSS:MoOX, in which PEDOT:PSS:MoOX has outperformed the others. In addition, the water vapor transmission rate of PEDOT:PSS:MoOX is 0.17 gm/(m2 day), which is much less than that of PEDOT:PSS.  相似文献   

15.
Despite the ubiquity of poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) in applications demanding mechanical flexibility, the effect on the mechanical properties of common additives—i.e., dimethylsulfoxide (DMSO), Zonyl fluorosurfactant (Zonyl), and poly(ethyleneimine) (PEI)—has not been reported. This paper describes these effects and uses plasticized films in solar cells and mechanical sensors for the detection of human motion. The tensile moduli of films spin‐coated from solutions containing 0%, 5%, and 10% DMSO and 0.1%, 1%, and 10% Zonyl (nine samples total) are measured using the buckling technique, and the ductility is inferred from measurements of the strain at which cracks form on elastic substrates. Elasticity and ductility are maximized in films deposited from solutions containing 5% DMSO and 10% Zonyl, but the conductivity is greatest for samples containing 0.1% Zonyl. These experiments reveal enlargement of presumably PEDOT‐rich grains, visible by atomic force microscopy, when the amount of DMSO is increased from 0% to 5%. PEI—which is used to lower the work function of PEDOT:PSS—has a detrimental effect on the mechanical properties of the PEDOT:PSS/PEI bilayer films. Wearable electronic sensors employing PEDOT:PSS films containing 5% DMSO and 10% Zonyl are ­fabricated, which exhibit detectable responses at 20% strain and high mechanical robustness through elastic deformation.  相似文献   

16.
We report the micropatterning of conducting polymer on the epoxy-based photoresist to demonstrate fully organic, conducting and flexible electrodes. We show that polystyrene sulfonic acid can be covalently linked to the surface of the photoresist (SU-8) by forming sulfonyl ester at the interfaces. We also present an application of the patterned PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate)/SU-8 to the electroplating of metal electrodes.  相似文献   

17.
The water−based conductive polymer, poly(3,4−ethylenedioxythiophene), doped with poly(styrene sulfonate) (PEDOT:PSS), has received much attention for its utility as a printable electrode due to its transparency, thermal stability, and processability; however, the electrical properties of devices prepared with printed PEDOT:PSS electrodes are generally inferior to those of devices fabricated with evaporated metal electrodes or their inorganic counterparts. Here, we show that the electrical performances of polymer thin film transistors could be improved by doping the PEDOT:PSS chains used as source and drain electrodes. The addition of HAuCl4 to the PEDOT:PSS solution increased the electrical conductivity and work function of the electrodes. The PEDOT:PSS film doped with 10 mM HAuCl4 provided a field effect mobility exceeding 0.01 cm2V−1s−1, a factor of 7 greater than the value obtained from the device prepared with pristine PEDOT electrodes.  相似文献   

18.
Recent market studies mention the necessity to include sensors in the design of organic electronic devices in order to broaden the range of applications. It is therefore essential to identify potential organic mechanical sensor materials and to develop processes and methods to structure them and characterize their piezoresistive properties. Furthermore, it is also essential for organic electronic devices to know the change of resistance upon bending of flexible substrates. A material widely used in organic electronics is the complex of the intrinsically conductive polymer poly(3,4-ethylenedioxythiophene) and polystyrene sulfonate acid (PEDOT/PSS). In this paper first the fabrication of a polyimide (PI) membrane with integrated PEDOT/PSS strain gauges is presented. Upon a pressure difference the membrane is deflected and the resulting changes in resistance of the sensor elements are recorded. By applying a membrane mechanics model the resistance changes can be linked to the strain in the membrane and then the plane strain gauge factor kPS for PEDOT/PSS of 0.48±0.07 at 36.6±3% rH can be determined.  相似文献   

19.
A highly conductive, smooth and transparent electrode is developed by coating poly (3,4-ethylenedioxythiophene):poly (styrenesulfonate) (PEDOT:PSS) over silver nanowires (AgNWs) followed by a hot-pressing method. The hot-pressed AgNW/PEDOT:PSS film shows a low sheet resistance of 12 Ω/square, a transmittance of 83% at 550 nm and a smooth surface. The improvement of the conductivity and smoothness are ascribed to the fusion of nanowires resulted from the mechanical hot-pressing. The AgNW/PEDOT:PSS film on polyethylene naphthalate (PEN) substrate exhibits higher conductive stability against the bending test than commonly used indium tin oxide (ITO). Using the hot-pressed AgNW/PEDOT:PSS film as the anode, we have fabricated ITO-free organic light emitting diode with a maximum current efficiency of 58.2 cd/A, which is higher than the device with ITO anode. This proves that such AgNW/PEDOT:PSS film treated by hot-pressing is a promising candidate for flexible optoelectronic devices.  相似文献   

20.
We have demonstrated an indium-tin-oxide free organic light-emitting device (OLED) with improved efficiency by doping poly (3,4-ethylene dioxythiophene):poly (styrene sulfonate) (PEDOT:PSS) with graphene oxide (GO) as a composite anode. In comparison with a pure PEDOT:PSS anode, 55% enhancement in efficiency has been obtained for the OLEDs based on the PEDOT:PSS/GO composite anode at an optimal condition. The PEDOT:PSS/GO composite anode shows a lower hole-injection barrier, which contributes to the improved device efficiency. Moreover, both high transmittance and good surface morphology similar to that of the pure PEDOT:PSS film also contribute to the enhanced efficiency. It is obvious that composite anode will generally be applicable in organic optoelectronic devices which require smooth and transparent anode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号