首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple, rapid and sensitive analytical procedure for the measurement of celecoxib (CXB) levels in skin samples after in vitro penetration studies was developed and validated. In vitro permeability studies in porcine skin were performed for quantification of CXB at different layers of skin, the stratum corneum (SC) and epidermis plus dermis (EP + D) as well as in the acceptor solution (AS) to assess CXB permeation through skin. CXB was quantified by HPLC using a C18 column and UV detection at 251 nm. The mobile phase was methanol–water 72:28 (v/v) and the flow‐rate was 0.8 mL/min. The CXB retention time was 5 min. The assay was linear for CBX in the concentration range of 0.1–3.0 μg/mL in the AS (drug permeated through skin) and 5.0–50.0 μg/mL for drug retained in SC and [EP + D] in vitro. The linear correlation coefficients for the different calibration curves were equal or greater than 0.99. Intra‐ and inter‐assay variabilities were below 8.0%. Extraction of CXB from skin samples showed recoveries higher than 95.0% after 15 min of ultrasonic sound and centrifugation at 2500 rpm for 3 min. The method was considered appropriate for the assay of CXB in skin samples, after in vitro cutaneous penetration studies. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Topical application of lycopene is a convenient way to restore antioxidants depleted from the skin by UV radiation and achieve protection against premature aging and cancer. In this study, a simple, rapid and reproducible method to quantify lycopene in different skin layers was developed, validated and employed to assess this compound after skin penetration studies. Lycopene was extracted from the stratum corneum (SC) and viable epidermis and dermis (ED) by vortex homogenization and bath sonication in a mixture of acetonitrile and methanol (52:48, v/v). Lycopene was assayed by HPLC using a C18 column, and acetonitrile:methanol (52:48, v/v) as mobile phase. The quantification limit of lycopene in samples of SC and ED was 35 ng/mL and the assay was linear from 35 to 2000 ng/mL. Within‐day and between‐days assays coefficients of variation and relative errors (indicative of precision and accuracy) were less than 15% (or 20% for the limit of quantification). Lycopene recovery from SC and ED was dependent on the spiked concentration: for 50 ng/mL, recoveries were 88.3 and 90.5%; for 100–1000 ng/mL, recoveries were 68.6–74.9%. This method has a potential application for lycopene quantification during formulation development and evaluation in the dermatological field. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
This study describes the development, validation and application of a high‐performance liquid chromatography (HPLC) method for the simultaneous determination of the in vitro skin penetration profile of four UV filters on porcine skin. Experiments were carried out on a gel‐cream formulation containing the following UV filters: diethylamino hydroxybenzoyl hexyl benzoate (DHHB), bis‐ ethylhexyloxyphenol methoxyphenyl triazine (BEMT), methylene bis‐ benzotriazolyl tetramethylbutylphenol (MBBT) and ethylhexyl triazone (EHT). The HPLC method demonstrated suitable selectivity, linearity (10.0–50.0 μg/mL), precision, accuracy and recovery from porcine skin and sunscreen formulation. The in vitro skin penetration profile was evaluated using Franz vertical diffusion cells for 24 h after application on porcine ear skin. None of the UV filters penetrated the porcine skin. Most of them stayed on the skin surface (>90%) and only BEMT, EHT and DHHB reached the dermis plus epidermis layer. These results are in agreement with previous results in the literature. Therefore, the analytical method was useful to evaluate the in vitro skin penetration of the UV filters and may help the development of safer and effective sunscreen products.  相似文献   

4.
Polyphenolic compounds—mangiferin and hesperidin—are, among others, the most important secondary metabolites of African shrub Cyclopia sp. (honeybush). The aim of this study was to compare the percutaneous absorption of mangiferin and hesperidin from solutions (water, ethanol 50%, (v/v)) and extracts obtained from green and fermented honeybush (water, ethanol 50%, (v/v)). Research was performed with the Bronaugh cells, on human dorsal skin. The mangiferin and hesperidin distributions in skin layers (stratum corneum, epidermis, and dermis) and in acceptor fluid (in every 2, 4, 6, and 24 h) were evaluated by HPLC–Photodiode Array Coulometric and Coulometric Electrochemical Array Detection. The transdermal distribution of hesperidin was also demonstrated by fluorescence microscopy. Results indicated that mangiferin and hesperidin were able to cross the stratum corneum and penetrate into the epidermis and dermis. An advantage of hesperidin penetration into the skin from the water over ethanol solution was observed (451.02 ± 14.50 vs. 357.39 ± 4.51 ng/cm2), as well as in the mangiferin study (127.56 ± 9.49 vs. 97.23 ± 2.92 ng/cm2). Furthermore, mangiferin penetration was more evident from nonfermented honeybush ethanol extract (189.85 ± 4.11 ng/cm2) than from solutions. The permeation of mangiferin and hesperidin through the skin to the acceptor fluid was observed regardless of whether the solution or the honeybush extract was applied. The highest ability to permeate the skin was demonstrated for the water solution of hesperidin (250.92 ± 16.01 ng/cm2), while the hesperidin occurring in the extracts permeated in a very low capacity. Mangiferin from nonfermented honeybush ethanol extract had the highest ability to permeate to the acceptor fluid within 24 h (152.36 ± 8.57 ng/cm2).  相似文献   

5.
The objective was to develop a simple HPLC method to quantify exenatide—a 39 amino acid residue incretin mimetic used in diabetes therapy. To date, only non‐validated, sometimes incomplete, gradient methods have been reported in the literature. Isocratic separation was achieved using a C4 column and a mixed solvent system, A–B–C (48:45:7, v/v/v; pH* 5.2), where A represents KH2PO4 (pH 4.5; 0.1 m ) and MeCN (60:40, v/v), B corresponds to NaClO4·H2O (pH 6.0; 0.2 m ) and MeCN (60:40, v/v), and C is water. Exenatide eluted at 3.64 min and the total run time was 6 min. The method was specific and the response was accurate, precise and linear from 0.75 to 25 µg/mL. It was used to quantify exenatide transport across intact and laser‐porated porcine skin in vitro as a function of laser fluence [0 (i.e. intact skin), 9 and 15 J/cm2, respectively]. Although no permeation was observed using intact skin, cumulative exenatide permeation after 8 h through laser porated skin was 9.6 ± 6.5 and 12.4 ± 6.4 µg/cm2 at fluences of 9 and 15 J/cm2, respectively. This is the first validated isocratic method for exenatide quantification and it may be of use in quality control analysis and with other biological matrices. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Pizotifen malate is an antihistamine and serotonin inhibitor used in the preventive treatment of migraine and eating disorders. A simple, rapid, accurate and precise high‐performance liquid chromatography (HPLC) method involving ultraviolet detection was validated for the quantitative analysis of pizotifen malate in samples from in vitro transdermal diffusion studies. The method was validated for specificity, linearity, accuracy, precision, limit of detection, limit of quantification and robustness. Drug stability in the solution was also determined under different conditions. Separation was carried out using a 250 × 4.0 mm Kromasil® C18 column at room temperature. The detector response, fitted at 254 nm, was found to be linear in a concentration range between 0.24 and 24.0 µg/mL. The limit of detection was 0.02 µg/mL and the limit of quantification was 0.07 µg/mL. Finally, in vitro transdermal diffusion of pizotifen malate was characterized using the validated HPLC method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
A simple isocratic HPLC method for the quantification of Cytochrome c in skin permeation samples was developed and validated. The mobile phase comprised a 41 : 59 mixture of an organic phase A (0.1% trifluoroacetic acid in a 90 : 10 mixture of MeCN–H2O) and an aqueous phase B (0.1% trifluoroacetic acid in H2O). The Cytochrome c retention and run times were 2.62 and 8.0 min, respectively—much shorter than those for existing gradient methods. The response was accurate, precise and linear from 2.5 to 25 μg/mL. The mean recoveries for intra‐day and inter‐day analysis ranged from 88.5 to 103.8% and the RSD varied from 0.05 to 1.55%. The assay was used to quantify transport of Cytochrome c across intact and laser‐microporated porcine skin in vitro. Cytochrome c permeation and the amount of protein retained within the membrane over 24 h were quantified as a function of the number of micropores. Although no Cytochrome c permeation was observed across intact skin, laser microporation enabled delivery of 22.9 ± 3.3 and 56.0 ± 15.9 μg/cm2 of the protein across skin samples with 300 and 1800 micropores, respectively. In conclusion, the HPLC method provided a fast, efficient means to quantify Cytochrome c in samples from skin transport studies. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
A simple, rapid and sensitive high-performance liquid chromatography (HPLC) method has been developed for the determination of triptolide. Triptolide was separated from skin endogenous and blank matrices on a 5 μm LiChrospher RP-C18 column by a mobile phase of methanol-water (65:35, v/v). The permeation samples were injected directly without pretreatment. The limit of quantitation (LOQ) and detection (LOD) for triptolide in permeation samples were far below (0.01 and 0.005 μg/mL, respectively). The method was linear over the range of 0.1-104.2 μg/mL with r2 = 0.9999. This HPLC assay is promising for measuring in vitro percutaneous penetration of triptolide through mice skins and also can be performed in the triptolide-loaded microemulsions formulation screening.  相似文献   

9.
Catechin is found in several natural sources, as Eugenia dysenterica and Syzygium cumini extracts. Its antioxidant and UV‐protective properties suggest a potential use in cosmetic and dermatological formulations. A simple analytical method capable of giving support to experiments performed along the development of topical formulations containing this natural substance (i.e. drug assay, skin permeation and stability studies), however, is still needed. Thus, this work aimed to develop and validate a selective HPLC method for catechin determination during the development of topical formulations. Separation was achieved using an RP‐C18 column (300 × 3.9 mm; 10 μm), with a mobile phase of methanol–phosphoric acid 0.01 m (15: 85, v/v), a flow rate of 0.8 mL/min, temperature set at 40°C and UV detection at 230 nm. The method was linear in a range from 0.5 to 10.0 μg/mL (r = 0.9998), precise with an overall variation coefficient of 5.5% and accurate with catechin recovery from the skin layers >85%. Additionally, the method was sensitive (limit of detection, 0.109 μg/mL; limit of quantification, 0.342 μg/mL) and selective against plant extracts, skin matrices and formulation interferents, as well as catechin degradation products. It was also robust regarding both methodology parameters and analytical stability.  相似文献   

10.
To investigate the consistency and bioequivalence of tacrolimus ointment reference and trial formulation, the tacrolimus concentrations in blood and skin were determined by HPLC‐ESI‐MS/MS following topical application of two kinds of ointment in porcine skin in a parallel, cross‐over trial. The plasma protein of blood was precipitated by acetonitrile and the tacrolimus in skin was extracted by acetonitrile before HPLC‐ESI‐MS/MS analysis. The internal calibration method (diazepam was the internal standard) was used for quantification analysis (R2 > 0.9999), with linear range from 0.05 to 5 ng/mL for blood samples and from 1 to 200 ng/mL for skin samples. The limits of detection for the porcine blood and skin were 0.005 and 0.5 ng/mL, respectively. The average recoveries for the porcine blood and skin spiked at three levels were 97.56–109.53 and 96.48–103.57%, respectively. The precision expressed in RSDs was from 3.43 to 10.83% for porcine blood and from 3.10 to 8.69% for porcine skin. For the same pig, the tacrolimus concentrations and variation with time of the two kinds of ointment in porcine skin were similar, although variation occurred with different individuals. These results showed that the release and penetration of tacrolimus from the reference and trial formulation are similar. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
An innovative and sensitive HPLC–UV method for the extraction and quantification of methotrexate (MTX) in skin layers was developed and validated. Owing to the physico-chemical characteristics of the drug and the nature of the tissue, it was necessary to use folic acid (FA) as an internal standard for MTX quantification in the dermis. MTX (and FA) analysis was performed on a Phenomenex Jupiter C18 column, using a 50 mm sodium acetate buffer (pH 3.6) and methanol mixture (87:13, v/v) as mobile phase, pumped at 1 ml/min. The absorbance was monitored at 290 nm. The method was selective, linear in the range 0.11–8.49 μg/ml for extraction solvent and 0.05–8.94 μg/ml for pH 7.4 phosphate-buffered saline, precise and accurate, with lower limits of quantitation of 0.11 μg/ml (extraction solvent) and 0.05 μg/ml (pH 7.4 phosphate-buffered saline). The method developed is suitable for the quantification of MTX in skin layers at the end of in vitro permeation experiments; the overall mass balance was 96.5 ± 1.4%, in line with the requirements of the Organisation for Economic Co-operation and Development guideline for the testing of the chemicals (Skin absorption: in vitro method).  相似文献   

12.
Tedizolid (TDZ) is a novel oxazolidinone class antibiotic, indicated for the treatment of acute bacterial skin and skin structure infections in adults. In this study a highly sensitive UPLC‐MS/MS assay was developed and validated for the determination of TDZ in rat plasma using rivaroxaban as an internal standard (IS). Both TDZ and IS were separated on an Acquity UPLC BEH? C18 column using an isocratic mobile phase comprising of acetonitrile–20 mm ammonium acetate (85:15, v/v), eluted at 0.3 mL/min flow rate. The plasma sample was processed by liquid liquid extraction technique using ethyl acetate as an extracting agent. The analyte and IS were detected in positive mode using electrospray ionization source. The precursor to product ion transitions at m/z 371.09 > 343.10 for TDZ and m/z 435.97 > 144.94 for IS were used for the quantification in multiple reaction monitoring mode. The calibration curve was linear in the concentration range of 0.74–1500 ng/mL and the lower limit of quantification was 0.74 ng/mL only. The developed assay was validated following standard guidelines for bioanalytical method validation (US Food and Drug Administration) and all the validation results were within the acceptable limits. The developed assay was successfully applied into a pharmacokinetic study in rats. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Afatinib (AFT) is a new tyrosine kinase inhibitor approved for the treatment of nonsmall cell lung cancer. In the present study, a simple, specific, rapid and sensitive liquid chromatography tandem mass‐spectrometric method for the quantification of AFT in human plasma, was developed and validated. Chromatographic separation of the analytes was accomplished on a reversed‐phase Luna®‐PFP 100 Å column (50 × 2.0 mm; 3.0 μm) maintained at ambient temperature. Isocratic elution was carried out using acetonitrile–water (40:60, v/v) containing 10 mm ammonium formate buffer (pH 4.5) adjusted with formic acid at a flow rate of 0.4 mL min?1. The analytes were monitored by electrospray ionization in positive ion multiple reaction monitoring mode. The method yields a linear calibration plot (r2 = 0.9997) from a quantification range of 0.5–500 ng mL?1 with the lower limit of quantification and lower limit of detection of 1.29 and 0.42 ng mL?1, respectively. The intra‐ and inter‐day precision and accuracy were estimated and found to be in the ranges of 1.53–4.11% for precision and ?2.80–0.38% for accuracy. Finally, quantification of afatinib in a metabolic stability study in rat liver microsomes was achieved through the proposed method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents the first attempt to evaluate the potential of clinical UV exposures to induce the human immunodeficiency (HIV) promoter and, thus, to upregulate HIV growth in those skin cells that are directly affected by the exposure. Using the data for HIV promoter activation in vitro, we computed UVB and psoralen plus UVA (PUVA) doses that produce 50% of the maximal promoter activation (AD50). Then, using (a) literature data for UV transmittance in the human skin, (b) a composite action spectrum for HIV promoter and pyrimidine dimer induction by UVB and (c) an action spectrum for DNA synthesis inhibition by PUVA, we estimated the distribution of medical UVB and PUVA doses in the skin. This allowed us to estimate how deep into the skin the HIV-activating doses might penetrate in an initial and an advanced stage of UVB or PUVA therapy. Such analysis was done for normal type II skin and for single exposures. The results allow us to predict where in the skin the HIV promoter may be induced by selected small and large therapeutic UVB or PUVA doses. To accommodate changes in skin topography due to disease and UV therapy, our considerations would require further refinements. For UVB we found that, when the incident dose on the surface of the skin is 500 J/m2 (290–320nm) (initial stage of the therapy), the dose producing 50% of the maximal HIV promoter activation (ADUVB50) is limited to the stratum corneum. However, with an incident dose of 5000 J/m2 (an advanced stage of the therapy), ADUVB50 may be delivered as far as the living cells of the epidermis and even to some parts of the upper dermis. For PUVA we found that, when the incident UVA doses are 25 or 100 kJ/m2 (320–400nm) (an initial and an advanced stage of therapy, respectively), and the 8-methoxypsoralen concentration in the blood is 0.1 μg/mL (the desired level), the combined doses to the mid epidermis (and some areas of the upper dermis) are well below the 50% HIV promoter-activating PUVA dose (ADPUVA50). Only under the worst scenario conditions, i. e. an exceptionally high drug concentration in the patient's tissues and localization of HIV in the nearest proximity to the skin surface, would the combined PUVA dose expected during photochemotherapy exceed ADPUVA50. These results suggest that the probability of HIV activation in the epidermis by direct mechanisms is higher for UVB than for PUVA treatment. However, complexities of the UV-inducible HIV activation and immunomodulatory phenomena are such that our results by themselves should not be taken as an indication that UVB therapy carries a higher risk than PUVA therapy when administered to HIV-infected patients.  相似文献   

15.
This aim of this study was to evaluate the penetration depth, antioxidant capacity and the clinical efficacy of Melaleuca alternifolia pure essential oil and in a nanoemulsion to prevent skin photoaging. For this, 2% of pure essential oil or 2% of this essential oil in a nanoemulsion were vehiculated in a formulation. The skin penetration was evaluated using confocal Raman microspectroscopy. The radical protection factor was evaluated using electron paramagnetic resonance spectroscopy. For a clinical study, 40 male participants, aged 18–28 years, were enrolled, being divided into three groups: vehicle formulation, M. alternifolia pure essential oil and M. alternifolia Nanoemulsion. All the participants also received a sunscreen SPF 50 to use during the day. Before and after 90 days of study, skin hydrolipidics and morphological characteristics were performed by skin imaging and biophysical techniques. The nanoemulsion presented a lower antioxidant capacity and a higher penetration through the stratum corneum, reaching the viable epidermis, improving the stratum granulosum morphology. The groups presented an increase in the papillary depth, improving in the dermis echogenicity and the collagen fibers. Melaleuca alternifolia essential provides the potential to improve photoaged skin, being the application of nanoemulsion able to reach deeper skin layers.  相似文献   

16.
A gas chromatography–mass spectrometry method was developed and validated for the simultaneous automated solid‐phase extraction and quantification of cotinine and trans‐3‐hydroxycotinine in human urine. Good linearity was observed over the concentration ranges studied (R2 > 0.99). The limit of quantification was 10 ng/mL for both analytes. The limits of detection were 0.06 ng/mL for cotinine (COT) and 0.02 ng/mL for trans‐3‐hydroxycotinine (OH‐COT). Accuracy for COT ranged from 0.98 to 5.28% and the precision ranged from 1.24 to 8.78%. Accuracy for OH‐COT ranged from ?2.66 to 3.72% and the precision ranged from 3.15 to 7.07%. Mean recoveries for cotinine and trans‐3‐hydroxycotinine ranged from 77.7 to 89.1%, and from 75.4 to 90.2%, respectively. This analytical method for the simultaneous measurement of cotinine and trans‐3‐hydroxycotinine in urine will be used to monitor tobacco smoking in pregnant women and will permit the usefulness of trans‐3‐hydroxycotinine as a specific biomarker of tobacco exposure to be determined. © 2014 The Authors. Biomedical Chromatography published by John Wiley & Sons Ltd.  相似文献   

17.
Clobetasol propionate (CLO) is a potent steroid used for the treatment of several dermatological diseases. Recent studies suggest its additional use in alopecia topical treatment, generating a demand for novel formulations with specific delivery into hair follicles. Hence, a selective analytical method for drug quantification in follicular structures and skin layers is required. For this, a simple HPLC‐UV method was developed. Quantification was performed using a RP‐C18 column (4.6 mm × 15 cm, 5 μm), with a mixture of methanol–acetonitrile–water (50:15:35 v /v) as mobile phase, a flow rate of 1.2 mL/min, oven temperature of 30°C, injection volume of 50 μL and detection at 240 nm. The optimized conditions enabled a 12 min running with CLO elution at 10.1 min and resolution of 2.424 from skin matrix interferences. Validation was performed in accordance with International Conference on Harmonization guidelines and fulfilled the criteria of selectivity, linearity (0.5–15.0 μg/mL), robustness, precision, accuracy and limits of detection and quantification (0.02 and 0.07 μg/mL, respectively). The validated method was successfully applied for CLO quantification following in vitro skin permeation experiments and differential tape‐stripping for hair follicle deposition determination, demonstrating its suitability.  相似文献   

18.
A simple, rapid and sensitive method for quantification of atomoxetine by liquid chromatography–tandem mass spectrometry (LC‐MS/MS) was developed. This assay represents the first LC‐MS/MS quantification method for atomoxetine utilizing electrospray ionization. Deuterated atomoxetine (d3‐atomoxetine) was adopted as the internal standard. Direct protein precipitation was utilized for sample preparation. This method was validated for both human plasma and in vitro cellular samples. The lower limit of quantification was 3 ng/mL and 10 nm for human plasma and cellular samples, respectively. The calibration curves were linear within the ranges of 3–900 ng/mL and 10 nm to 10 µm for human plasma and cellular samples, respectively (r2 > 0.999). The intra‐ and inter‐day assay accuracy and precision were evaluated using quality control samples at three different concentrations in both human plasma and cellular lysate. Sample run stability, assay selectivity, matrix effect and recovery were also successfully demonstrated. The present assay is superior to previously published LC‐MS and LC‐MS/MS methods in terms of sensitivity or the simplicity of sample preparation. This assay is applicable to the analysis of atomoxetine in both human plasma and in vitro cellular samples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Crisaborole is a boron compound recently approved by the US Food and Drug Administration as a 2% ointment for the treatment of mild to moderate atopic dermatitis. This work describes a simple method for the quantification of the drug in the skin layers at the end of in‐vitro permeation experiments. Chromatographic separation was carried out on a reverse‐phase C18 column using a mixture of trifluoroacetic acid 0.05%–acetonitrile (55:45, v/v) as mobile phase, pumped at 1 ml/min. Column temperature was 35°C and UV detection was performed at 250 nm. The method was linear in the range of concentration from 0.06 to 6 μg/ml (R2 = 1) and was selective, precise and accurate. Depending on the solvent used, the LOQ ranged from 0.014 to 0.030 μg/ml and the LOD from 0.005 to 0.010 μg/ml. The extraction from all the skin layers was quantitative. The developed method was successfully tested in an in‐vitro permeation study, proving to be an effective tool in the development of new formulations containing crisaborole.  相似文献   

20.
A simple, rapid, precise and specific isocratic HPAE‐PAD method for quantification of CGP69669A was developed and validated. CGP69669A is a glycomimetic of sialyl Lewisx and an antagonist of E‐selectin with potential application in the treatment of inflammatory skin disease. Quantification was performed using a Dionex CarboPacTM PA‐200 anion‐exchange column (3 × 250 mm) with 100 mm NaOH solution as mobile phase, a flow rate of 0.50 mL/min and an injection volume of 10 μL. A quadruple potential waveform was used to detect the carbohydrate (+0.1 V from 0.00 to 0.40 s, ?2.0 V from 0.41 to 0.42 s, +0.6 V at 0.43 s and ?0.1 V from 0.44 to 0.50 s with current integrated between 0.20 and 0.40 s for detection) and rafinose was employed as an internal standard. The optimized conditions enabled rapid elution of CGP69669A (at 3.0 min) without interference from solvent peaks or substances present in the skin. The method showed good intra‐ and inter‐day precision and accuracy and the response was linear from 1.0 to 25 µg/mL. This is the first validated direct method for the quantification of CGP69669A. It will now be employed in studies investigating the topical and transdermal delivery of CGP69669A in vitro and in vivo and it should also be of use for other applications of this molecule. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号