首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
俞榕 《物理学报》2015,64(21):217102-217102
大部分铁基超导体的正常态呈现坏金属行为, 这表明体系中存在较强的电子关联效应. 最近的实验与理论研究显示, 铁基超导体中的电子关联具有多轨道的特征. 本文介绍与评论铁基超导体多轨道哈伯德模型中电子关联方面理论研究的最新进展; 着重讨论以隶自旋技术为代表的一系列量子多体计算方法在研究多轨道系统中金属绝缘体相变的应用. 理论计算给出了铁基超导体多轨道哈伯德模型基于电子关联的基态相图. 在对应母体化合物的电子填充数时, 基态存在从金属到绝缘体的莫特转变. 临近莫特转变, 体系呈现坏金属行为; 其电子性质存在较强的轨道选择性. 轨道选择性的强弱与体系中的洪德耦合和轨道的晶体场劈裂密切相关. 对钾铁硒系统, 研究发现其基态相图存在轨道选择莫特相: 其中铁的3d xy轨道已被莫特局域化, 但其他3d轨道电子仍具有巡游性. 这一新相的发现, 对理解以钾铁硒为代表的一大类铁基超导体正常态与超导之间的联系提供了重要线索.  相似文献   

2.
顾强强  万思源  杨欢  闻海虎 《物理学报》2018,67(20):207401-207401
铁基高温超导体自2008年发现以来,对其超导电性的研究一直是一个热门的课题.扫描隧道显微镜能够在原子尺度进行表面形貌和隧道谱测量,从微观角度研究电子态密度的信息,是研究超导的重要谱学手段.近年来,在铁基超导电性方面,扫描隧道显微镜实验已经积累了一些有价值的结果,本文进行了总结介绍.铁基超导体是多带多超导能隙的超导体,不同材料的费米面结构有很大的变化.扫描隧道显微镜证明,同时有电子和空穴费米面最佳掺杂的铁基样品超导能隙结构是无节点并带有能隙符号变化的s±波.而进一步的实验发现在没有空穴费米面的FeSe基超导体中也存在能隙符号的相反,对统一铁基超导体的配对对称性提供了重要实验证据.此外,扫描隧道显微镜在研究铁基超导体的电子向列相、浅能带特性、可能的拓扑特性方面,提供了重要的实验数据.本文对上述相关内容进行了总结,并做了相应分析和讨论.  相似文献   

3.
龚冬良  罗会仟 《物理学报》2018,67(20):207407-207407
类似于其他非常规超导材料,铁基高温超导电性通常出现在静态长程反铁磁序被抑制之后,并且强烈的自旋涨落始终与超导电性相伴相生,因此理解磁性相互作用是建立铁基超导微观机理的重要前提.中子散射作为研究凝聚态物质中磁性相互作用的有力工具,在揭示铁基超导电性的磁性起源方面起到了关键作用.本文系统总结了近十年来铁基超导材料的中子散射研究结果,包括铁基超导材料中的静态磁结构、磁性相变、动态磁激发、电子向列相等,并探讨它们与超导电性之间的关系.  相似文献   

4.
We perform first-principles calculations for anisotropy of various iron-based superconductors. The anisotropy ratio γλ of the c-axis penetration depth to the ab-plane one is relatively small in BaFe2As2, LiFeAs and FeSe, indicating that the transport applications are promising in these superconductors. On the other hand, in those having perovskite-type blocking layers such as Sr2ScFePO3 we find a very large value, γλ ? 200, comparable to that in strongly anisotropic high-Tc cuprate Bi2Sr2CaCu2O8−δ. Thus, the intrinsic Josephson junction stacks are expected to be formed along the c-axis, and novel Josephson effects due to the multi-gap nature are also suggested in these superconductors. We also examine the doping effect on the anisotropy of LaFeAsO.  相似文献   

5.
Low-energy spin excitations have been studied on polycrystalline LaFeAsO1?xFx samples by inelastic neutron scattering. The Q-integrated dynamical spin susceptibility χ″(ω) of the superconducting samples is found to be comparable to that of the magnetically ordered parent sample. On the other hand, χ″(ω) almost vanishes at x = 0.158, where the superconducting transition temperature Tc is suppressed to 7 K. In addition, χ″(ω) in optimally doped LaFeAsO0.918F0.082 with Tc = 29 K exhibits a spin resonance mode. The peak energy, Eres, when scaled by kBTc is similar to the value of about 4.7 reported in other high-Tc iron-based superconductors. This result suggests that there is intimate relationship between the dynamical spin susceptibility and high-Tc superconductivity in iron-based superconductors, and is consistent with a nesting condition between Fermi surfaces at the Γ and M points.  相似文献   

6.
Current status of iron-based superconductors is summarized. Although short range magnetic ordering and magnetic phase separation of Fe are controversial, (long range) magnetic and electronic phase diagrams of iron based superconductors can be classified into two-type. Antiferromagnetic ordering of itinerant Fe does not coexist with superconducting phase of SmFeAsO1???xFx. The very large H c2 of iron-based superconductors attract us to attempts at applications.  相似文献   

7.
In order to resolve the long-standing issue of how itinerant ferromagnetism is affected by lattice structure and Hund's coupling, we compare various three-dimensional lattice structures in the single- and multiorbital Hubbard models with the dynamical mean-field theory with an improved quantum Monte Carlo algorithm that preserves the spin-SU(2) symmetry. The result indicates that both the lattice structure and the d-orbital degeneracy are essential for the ferromagnetism in the parameter region representing a transition metal. Specifically, (a) Hund's coupling, despite the common belief, is important, which is here identified to come from particle-hole scatterings, and (b) the ferromagnetism is a correlation effect (outside the Stoner picture) as indicated from the band-filling dependence.  相似文献   

8.
We discuss results of simulations of the Hubbard model of interacting electrons on a lattice. We start with a brief discussion of methodology and point out some of the outstanding problems. We then discuss results of simulations of the model in three, two, and one dimension, particularly in connection with its magnetic and superconducting properties. We conclude with a brief discussion of future directions.  相似文献   

9.
We perform first-principle phonon calculations for three typical iron-based superconductors, i.e., LaFeAsO,BaFe2As2, and FeSe. Though those crystals have different structures, we find that the optical modes associated with Fe vibration have almost similar characters. Moreover, we examine the pressure effect on phonons in FeSe. By increasing the external pressure, the phonon mode frequency related to Fe vibration effectively rises up and the electronic density of states at Fermi level also increases. These results may correlate to the critical temperature enhancement under high pressure.  相似文献   

10.
在铁基超导体中存在着多种有序态,例如电子向列相和自旋密度波等,从而呈现出丰富的物理现象.输运性质的测量能为认识铁基超导体的低能激发提供极为有用的信息.铁砷超导体由于其电子结构的多能带特性,其电阻率和霍尔系数与温度的关系出现多样性的变化,但在正常态并没有看到有类似铜氧化物超导体的赝能隙打开等奇异行为.在空穴型掺杂的铁基超导体中观测到霍尔系数在低温下变号,对应温区的电阻率上出现一个很宽的鼓包等,可能是从非相干到相干态的转变.热电势行为也表现出与铜氧化物超导体的明显差异,比如铁基超导体的正常态热电势的绝对值反而在最佳掺杂区是最大的,这也许跟强的带间散射有关.能斯特效应表明铁基超导体在Tc以上的超导位相涨落并不明显,与铜氧化物超导体存在明显差别.在铁基超导体上所显示出来的这些反常热电性质,并没有在类似结构的镍基超导体(如LaNiAsO)上观测到,镍基超导体表现得更像一个通常的金属.这些均说明铁基超导体的奇异输运性质与其高温超导电性存在内在的关联,这些因素是建立其超导机理时需要考虑进去的.  相似文献   

11.
12.
13.
We study theoretically the effect of transition-metal (TM) substitution in iron-based superconductors through treating all of the TM ions as randomly distributed impurities. The extra electrons from TM elements are localized at the impurity sites. In the meantime the chemical potential shifts upon substitution. The phase diagram is mapped out and it seems that the TM elements can act as effective dopants. The local density of states (LDOS) is calculated and the bottom becomes V-shaped as the impurity concentration increases. The LDOS at the Fermi energy ρ(ω = 0) is finite and reaches the minimum at the optimal doping level. Our results are in good agreement with scanning tunneling microscopy experiments.  相似文献   

14.
超导是一种奇异的宏观量子现象.100多年来,已发现的超导体主要分为两类:以金属或者合金为代表的常规超导体以及以铜氧化物和铁基高温超导体为代表的非常规超导体.常规超导体的超导机理能被BCS超导理论完美解释,但高温超导体的超导机理至今仍未达成共识,已经成为凝聚态物理领域中长期争论且充满挑战的重大科学问题.从实验上揭示非常规超导材料的微观电子结构,是理解其奇异正常态和超导电性机理、建立新理论的前提和基础.角分辨光电子能谱技术,由于可以实现对材料中电子的能量、动量和自旋的直接测量,在高温超导研究中发挥了重要的作用.本文综述了我们利用角分辨光电子能谱技术在铜氧化物和铁基高温超导体电子结构和超导机理研究中取得的一些进展,主要包括母体的电子结构、正常态的非费米液体行为、超导态的能带和超导能隙结构以及多体相互作用等.这些结果为理解铜氧化物和铁基高温超导体的物性及超导机理提供了重要的信息.  相似文献   

15.
代霞  勒聪聪  吴贤新  胡江平 《中国物理 B》2016,25(7):77402-077402
We propose two possible new compounds, Ba_2CuO_2Fe_2As_2and K_2CuO_2Fe_2Se_2, which hybridize the building blocks of two high temperature superconductors, cuprates and iron-based superconductors. These compounds consist of square CuO_2 layers and antifluorite-type Fe_2X_2(X = As, Se) layers separated by Ba/K. The calculations of binding energies and phonon spectra indicate that they are dynamically stable, which ensures that they may be experimentally synthesized. The Fermi surfaces and electronic structures of the two compounds inherit the characteristics of both cuprates and iron-based superconductors. These compounds can be superconductors with intriguing physical properties to help to determine the pairing mechanisms of high Tc superconductivity.  相似文献   

16.
We study theoretically the single impurity effect on graphene-based superconductors. Four different pairing symmetries are discussed. Sharp in-gap resonant peaks are found near the impurity site for the d+id pairing symmetry and the p+ip pairing symmetry when the chemical potential is large. As the chemical potential decreases, the in-gap states are robust for the d + id pairing symmetry while they disappear for the p + ip pairing symmetry. Such in-gap peaks are absent for the fully gapped extended s-wave pairing symmetry and the nodal f-wave pairing symmetry. The existence of the ingap resonant peaks can be explained well based on the sign-reversal of the superconducting gap along different Fermi pockets and by analyzing the denominator of the T-matrix. All of the features may be checked by the experiments, providing a useful probe for the pairing symmetry of graphene-based superconductors.  相似文献   

17.
We present an improved analysis of the phase transitions in spin-triplet ferromagnetic superconductors within Ginzburg–Landau theory. We put special emphasis on the phase transitions from normal phase to the mixed phase of coexistence of ferromagnetism and unconventional superconductivity. We present a detailed analysis of the different phases that can occur and analyze the question under which conditions the phase transitions from normal phase to the mixed phase of coexistence of ferromagnetism and unconventional superconductivity are possible when compared to other phase transitions. The conditions for the phase transitions and the stability conditions are calculated. On the basis of this model, it is argued that the transition from normal phase to the mixed phase of coexistence is always of first order. It was observed from the theoretical calculations that the transition from the ferromagnetic phase to the coexistence phase can cross over from the first to the second order at the tricritical point.  相似文献   

18.
Angle-resolved photoemission spectroscopy (ARPES) has played an important role in determining the band structure and the superconducting gap structure of iron-based superconductors. In this paper, from the ARPES perspective, we briefly review the main results from our group in recent years on the iron-based superconductors and their parent compounds, and depict our current understanding on the antiferromagnetism and superconductivity in these materials.  相似文献   

19.
PC-19-INV: In order to clarify the mechanism of superconductivity in the iron-based compound recently discovered by Hosono’s group, we have first constructed a tight-binding model in terms of the maximally localized Wannier orbitals from a first-principles electronic structure calculation. The model has turned out to involve all the five Fe 3d bands. This is used to calculate the spin and charge susceptibilities with the five-band random-phase approximation, which are then plugged into the linearised Eliashberg equation. For a doped system we obtain an unconventional s-wave pairing with sign-reversing gap functions. To be more precise, the gap function is a 5×5 matrix, for which the diagonal elements mainly comprise dx2-y2 and dyz,dxz orbital components. The strong dependence of the gap between different orbitals may be observed experimentally.  相似文献   

20.
The European Physical Journal B - The physical properties of a quantum many-body system can, in principle, be determined by diagonalizing the respective Hamiltonian, but the dimensions of its...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号