首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stereoselective synthesis of saccharide thioglycosides containing 1,2-cis-2-amino glycosidic linkages is challenging. In addition to the difficulties associated with achieving high α-selectivity in the formation of 1,2-cis-2-amino glycosidic bonds, the glycosylation reaction is hampered by undesired transfer of the anomeric sulfide group from the glycosyl acceptor to the glycosyl donor. Overcoming these obstacles will pave the way for the preparation of oligosaccharides and glycoconjugates bearing the 1,2-cis-2-amino glycosidic linkages because the saccharide thioglycosides obtained can serve as donors for another coupling iteration. This approach streamlines selective deprotection and anomeric derivatization steps prior to the subsequent coupling event. We have developed an efficient approach for the synthesis of highly yielding and α-selective saccharide thioglycosides containing 1,2-cis-2-amino glycosidic bonds, via cationic nickel-catalyzed glycosylation of thioglycoside acceptors bearing the 2-trifluoromethylphenyl aglycon with N-phenyl trifluoroacetimidate donors. The 2-trifluoromethylphenyl group effectively blocks transfer of the anomeric sulfide group from the glycosyl acceptor to the C(2)-benzylidene donor and can be easily installed and activated. The current method also highlights the efficacy of the nickel catalyst selectively activating the C(2)-benzylidene imidate group in the presence of the anomeric sulfide group on the glycosyl acceptors.  相似文献   

2.
本工作研究了不同链长的ω-取代羧酸对硝基苯酯p-NO2-C6H4OCO(CH2)n-1Y(简称n-Y,n=17,13,11;Y=SH,H,OH,Br和SCH3)在Me2SO-H2O溶剂体系(有机溶剂体积组成分数φ=0.40,0.45,0.50,0.55)中的水解动力学,观察到疏水-亲脂作用影响下,由于13-SH和17-SH长链分子自身绕曲,可以实现十四元环和十八元环的大环邻基参与,至于11-SH的水解,则观察不到十二元环的邻基参与.因此,这些受物的邻基助效确与链长有关.溶剂组成对此现象也有影响.  相似文献   

3.
Synthetic glycolipids with defined structures are important tools in the study of glycolipid biology. In this paper we describe a solid-phase synthesis of three galactosylated serine-based glycosphingolipid analogues using the novel linker 2-fluoro-4-(hydroxymethyl)-phenoxyacetic acid. Gel-phase (19)F-NMR spectroscopy was used to measure the yield and stereochemical outcome of the solid-phase glycosylations. Under NIS-TfOH promotion, alpha- and beta-selective glycosylations were performed at room temperature with thioglycoside donors carrying fluorine labelled protective groups. Finally, the glycolipids were covalently linked to microtiter plates and labelled lectins with different selectivity for alpha- and beta-galactosides could bind to the glycolipid arrays.  相似文献   

4.
Tetra-acylated lipid As derived from Porphyromonas gingivalis LPS have been synthesized using a key disaccharide intermediate functionalized with levulinate (Lev), allyloxycarbonate (Alloc) and anomeric dimethylthexylsilyl (TDS) as orthogonal protecting groups and 9-fluorenylmethoxycarbamate (Fmoc) and azido as amino protecting groups. Furthermore, an efficient cross-metathesis has been employed for the preparation of the unusual branched R-(3)-hydroxy-13-methyltetradecanic acid and (R)-3-hexadecanoyloxy-15-methylhexadecanoic acid of P. gingivalis lipid A. Biological studies have shown that the synthetic lipid As cannot activate human and mouse TLR2 and TLR4 to produce cytokines. However, it has been found that the compounds are potent antagonist of cytokine secretion by human monocytic cells induced by enteric LPS.  相似文献   

5.
The self-assembling properties of a new series of archaeal tetraether glycolipid analogues 1-6 that are characterized by a bipolar architecture with two similar or different glycosidic and/or phosphate polar heads and a lipid core possessing a cyclopentane unit and/or branched chains were studied by means of differential scanning calorimetry, optical microscopy, X-ray scattering, freeze-fracture electron microscopy and dynamic light scattering. Unsymmetrical phosphate derivatives 1 and 2 spontaneously formed thermostable multilamellar and unilamellar vesicles in which most of the bipolar lipids adopted a trans-membrane conformation, as revealed by freeze-fracture electron microscopy. Supramolecular aggregates of neutral glycolipids 3-6 were found to depend on both the saccharidic polar heads and the chain composition. The presence of one glycosidic residue with rather marked hydrophilic properties, such as the lactosyl moiety, was required to allow the formation of multilamellar vesicles. Surprisingly, the introduction of a cyclopentane unit in the bridging chain was able to induce an apparent two-by-two membrane association: this unusual behaviour might be the result of unsymmetrical interfacial properties of the lipid layer caused by the presence of the cyclopentane unit.  相似文献   

6.
By using atomic force microscopy (AFM), we clearly show that the antimicrobial peptide affects the molecular interaction between lipopolysaccharide (LPS) and immune proteins (lipopolysaccharide binding protein [LBP] and CD14). To reconstruct an in vivo interaction, LBP and LPS (the Ra, Rc, and Re forms from Salmonella minnesota, with varying lengths of the saccharide region) were immobilized onto the AFM tip using a chemical spacer linker. We examined the interaction between the proteins on the tip and model lipid bilayer biomembranes including CD14, in both the presence and absence of the antimicrobial peptide, polymyxin B (PMB). When LPS was present, the binding force between the LBP-LPS complex and CD14 increased dramatically, compared to that seen between LBP and CD14 alone. Longer LPS saccharide regions resulted in higher binding forces. The data suggest that LPS may have an important influence on the binding of LBP to CD14 and that the saccharide region of LPS is influential in this regard. It was also found that the antimicrobial peptide PMB, at or above a particular concentration, specifically inhibited the binding between LBP-LPS and CD14.  相似文献   

7.
Regioselective deprotection of acetylated mannose-based mono- and disaccharides differently functionalized in anomeric position was achieved by enzymatic hydrolysis. Candida rugosa lipase (CRL) and Bacillus pumilus acetyl xylan esterase (AXE) were immobilized on octyl-Sepharose and glyoxyl-agarose, respectively. The regioselectivity of the biocatalysts was affected by the sugar structure and functionalization in anomeric position. Generally, CRL was able to catalyze regioselective deprotection of acetylated monosaccharides in C6 position. When acetylated disaccharides were used as substrates, AXE exhibited a marked preference for the C2, or C6 position when C2 was involved in the glycosidic bond. By selecting the best enzyme for each substrate in terms of activity and regioselectivity, we prepared a small library of differently monohydroxylated building blocks that could be used as intermediates for the synthesis of mannosylated glycoconjugate vaccines targeting mannose receptors of antigen presenting cells.  相似文献   

8.
We explore the influence of two solvents, namely water and the ionic liquid 1‐ethyl‐3‐methylimidazolium acetate (EmimAc), on the conformations of two cellulose models (cellobiose and a chain of 40 glucose units) and the solvent impact on glycosidic bond cleavage by acid hydrolysis by using molecular dynamics and metadynamics simulations. We investigate the rotation around the glycosidic bond and ring puckering, as well as the anomeric effect and hydrogen bonds, in order to gauge the effect on the hydrolysis mechanism. We find that EmimAc eases hydrolysis through stronger solvent–cellulose interactions, which break structural and electronic barriers to hydrolysis. Our results indicate that hydrolysis in cellulose chains should start from the ends and not in the centre of the chain, which is less accessible to solvent.  相似文献   

9.
Modified LDL-induced inflammation and oxidative stress are involved in the pathogenesis of diabetic retinopathy. Recent studies have also shown that modified LDL activates Toll-like receptor 4 (TLR4) to mediate retinal injury. However, the mechanism by which modified LDL activates TLR4 and the potential role of the TLR4 coreceptor myeloid differentiation protein 2 (MD2) are not known. In this study, we inhibited MD2 with the chalcone derivatives L2H17 and L6H21 and showed that MD2 blockade protected retinal Müller cells against highly oxidized glycated-LDL (HOG-LDL)-induced oxidative stress, inflammation, and apoptosis. MD2 inhibition reduced oxidative stress by suppressing NADPH oxidase-4 (NOX4). Importantly, HOG-LDL activated TLR4 and increased the interaction between NOX4 and TLR4. MD2 was required for the activation of these pathways, as inhibiting MD2 prevented the association of NOX4 with TLR4 and reduced NOX4-mediated reactive oxygen species production and TLR4-mediated inflammatory factor production. Furthermore, treatment of diabetic mice with L2H17 significantly reduced LDL extravasation in the retina and prevented retinal dysfunction and apoptosis by suppressing the TLR4/MD2 pathway. Our findings provide evidence that MD2 plays a critical role in mediating modified LDL-induced cell injury in the retina and suggest that targeting MD2 may be a potential therapeutic strategy.Subject terms: Obesity, Type 2 diabetes  相似文献   

10.
The reaction of 2-(omega-alkenyl)benzoic acids with bis(collidine)iodine and bis(collidine)bromine hexafluorophosphate was examined. Except with 2-but-3-enylbenzoic acid, for which only the exo lactone was obtained, for the other acids a mixture of exo-endo lactones was always obtained. The proportion of endo lactone was important for the acid chain length of 11 carbons (formation of a 12-membered ring endo lactone) and for the acid chain lengths higher than 14 carbons. The formation of the endo lactones was explained, on the base of molecular calculations, by competition between electronic and steric effects. These latter were developed by transannular interactions (for the acid chain lengths 8-11) and/or the conformations adopted by the chains (for the acid chain lengths > or = 14,) which disfavored the formation of the exo lactones. The larger proportion of endo lactones observed with the bromo reagent compared to the iodo reagent seemed due to electronic factors.  相似文献   

11.
Glycolipid presentation by CD1 proteins has emerged as an important aspect of antigen recognition, and presentation of alpha-glycosylceramides by CD1d to natural killer T cells has become a central focus in understanding how glycolipid presentation can influence immune responses. An alpha-galactosylceramide containing relatively long lipid chains has been the subject of intense study because, when presented by CD1d to natural killer T cells, it stimulates the release of both proinflammatory and immunomodulatory cytokines. Using an efficient synthesis of alpha-galactosylceramides, we have prepared a series of glycolipids in which the lipid chain lengths have been incrementally varied. The responses of natural killer T cells to these glycolipids have been determined, and we have found that truncation of the phytosphingosine lipid chain increases the relative amounts of immunomodulatory cytokines released. In similar fashion, the length of the acyl chain in alpha-galactosylceramides influences cytokine release profiles.  相似文献   

12.
Attachment of 4-amino-4-deoxy-l-arabinose to phosphates or sugar hydroxyl groups of lipopolysaccharide contributes to bacterial resistance against common antibiotics. For a detailed study of antigenic properties and binding interactions, Ara4N-containing inner core ligands related to Burkholderia and Proteus LPS have been synthesized in good yields. Glycosylation at position 8 of allyl glycosides of oct-2-ulosonic acids (Ko, Kdo) has been accomplished using an N-phenyltrifluoroacetimidate 4-azido-4-deoxy-l-arabinosyl glycosyl donor followed by azide reduction and global deprotection. The β-l-Ara4N-(1→8)-α-Kdo disaccharide was further extended into the branched β-l-Ara4N-(1→8)[α-Kdo-(2→4)]-α-Kdo trisaccharide via a regioselective glycosylation of a protected triol intermediate. Synthesis of Ara4N-modified lipid A - part structure occurring in the LPS of Burkholderia, Pseudomonas and Klebsiellla strains was accomplished using the H-phosphonate approach. The stereocontrolled assembly of the phosphodiester linkage connecting glycosidic centres of two aminosugars was elaborated employing an anomeric H-phosphonate of cyclic silyl-ether protected 4-azido-4-deoxy-β-l-arabinose which was coupled to the hemiacetal of the lipid A GlcN-disaccharide backbone. Conditions for global deprotection which warrant the integrity of "double anomeric" phosphodiester linkage were successfully developed. Introduction of thiol-terminated spacer at the synthetic ligands allows both coupling to BSA and immobilization on gold nanoparticles as well as generation of glycoarrays.  相似文献   

13.
R.U. Lemieux  S. Koto 《Tetrahedron》1974,30(13):1933-1944
The developments in stereochemistry which have made possible our present appreciation of the preferred orientation of the aglycon for a glycopyranoside are briefly reviewed. Recent studies in this laboratory are presented wherein, for model compounds, measurements were made of the coupling constant between the 13C-aglyconic carbons and anomeric hydrogens as an estimate of the torsion angles, of 13C-chemical shifts as a measure of relative steric compressions at the anomeric centers, and of contributions to the molecular rotations by units of conformational asymmetry defined by atoms about the glycosidic bond. These measurements are compared to the results of hard-sphere calculations. It is concluded that the exo-anomeric effect offers an important resistance to rotation about the anomeric carbon to glycosidic bond (φ angles) and that the preferred conformation for a glycopyranoside arise mainly from rotation about the aglyconic carbon to glycosidic oxygen bond (ψ angles).  相似文献   

14.
sp2-Iminosugar glycolipids (sp2-IGLs) represent a consolidated family of glycoconjugate mimetics encompassing a monosaccharide-like glycone moiety with a pseudoamide-type nitrogen replacing the endocyclic oxygen atom of carbohydrates and an axially-oriented lipid chain anchored at the pseudoanomeric position. The combination of these structural features makes them promising candidates for the treatment of a variety of conditions, spanning from cancer and inflammatory disorders to parasite infections. The exacerbated anomeric effect associated to the putative sp2-hybridized N-atom imparts chemical and enzymatic stability to sp2-IGLs and warrants total α-anomeric stereoselectivity in the key glycoconjugation step. A variety of O-, N-, C- and S-pseudoglycosides, differing in glycone configurational patterns and lipid nature, have been previously prepared and evaluated. Here we expand the chemical space of sp2-IGLs by reporting the synthesis of α-d-gluco-configured analogs with a bicyclic (5N,6O-oxomethylidene)nojirimycin (ONJ) core incorporating selenium at the glycosidic position. Structure–activity relationship studies in three different scenarios, namely cancer, Leishmaniasis and inflammation, convey that the therapeutic potential of the sp2-IGLs is highly dependent, not only on the length of the lipid chain (linear aliphatic C12 vs. C8), but also on the nature of the glycosidic atom (nitrogen vs. sulfur vs. selenium). The ensemble of results highlights the α-dodecylseleno-ONJ-glycoside as a promising multitarget drug candidate.  相似文献   

15.
We found an IL-6 level-enhancing compound during our synthetic study of trehalose-6,6'-dimycolate (1, TDM, formerly called cord factor) analogues. TDM is a glycolipid distributed in the cell wall of Mycobacterium tuberculosis and shows significant antitumor activity based on an immunoadjuvant activity. However, due to its significant toxicity, TDM is not yet applicable for practical use. In 1993, Datta and Takayama reported the purification of trehalose-6,6'-dicorynomycolate (2c, TDCM) from Corynebacterium spp. We have previously reported the synthesis of four diastereomeric TDCMs and showed that the synthetic (2R,3R,2'R,3'R)-TDCM (2c, hereafter abbreviated RRRR-TDCM-C14) is identical to natural TDCM; we also demonstrated that 2c and SSSS-TDCM-C14 (3c) showed significant antitumor activity as well as inhibitory activity in experimental lung metastasis based on the immunoadjuvant activity. Furthermore, we found that the significant lethal toxicity in mice by TDM (1) was no longer observed with the shorter-chain analogues of TDCMs. Therefore, we have elucidated that the 2,3-antistereochemistry (RR or SS) of the fatty acid residue is promising for biological activities. The chain length of the fatty acid residue should also be important for the biological activity, and thus, we designed a general synthetic procedure for trehalose diesters with 2,3-antistereochemistry and a series of chain lengths by using Noyori's asymmetric reduction of beta,beta-ketoesters followed by antiselective alkylation according to Frater to give beta,beta-hydroxy alcohols as the key steps. Thus, we prepared trehalose diesters (TDCM) 2a-d, 3a-d, and 4a-d as well as monoesters (TMCM) 5a-d and 6a-d. Immunological activities of TDCMs and TMCMs were evaluated by determining IL-6 level enhancement in mouse serum, and we found that RRRR-TDCM-C14 (2c) and RRSS-TDCM-C14 (4c) showed significant IL-6 level enhancement activities.  相似文献   

16.
Summary: A cellotetraose-backboned hepta-saccharide (XXXG) (a capital X represents a glucopyranose residue that is substituted with a xylopyranose through an α-1,6 glycosidic bond, and a capital G represents a non-substituted glucopyranose residue) and a nona-saccharide (XLLG) (a capital L represents a glucopyranose residue that is substituted with a galactopyranoseβ(1-2)xylopyranose through an α-1,6 glycosidic bond) have directly been converted to the corresponding 4,6-dimethoxy-1,3,5-triazin-2-yl derivatives (DMT-β-XXXG 1 and DMT-β-XLLG 2 , respectively) by the action of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methyl morpholinium chloride (DMT-MM). The selective nucleophilic attack of the anomeric hydroxyl group to DMT-MM has been achieved in water without using any protection of the hydroxyl groups. The resulting activated oligosaccharide derivatives ( 1 and 2 ) were found to polymerize catalyzed by an endo-β-1,4-glucanase as catalyst. The polymerization took place in a complete regio- and stereo-selective manner, affording non-natural polysaccharides having a XXXG-repeating unit and a XLLG-repeating unit, respectively, in the main chain. It is extremely difficult to construct such definite repeating structures via the conventional synthetic routes including protection-deprotection procedures.  相似文献   

17.
Retaining glycoside hydrolases (GHs), key enzymes in the metabolism of polysaccharides and glycoconjugates and common biocatalysts used in chemoenzymatic oligosaccharide synthesis, operate via a double-displacement mechanism with the formation of a glycosyl-enzyme intermediate. However, the degree of oxocarbenium ion character of the reaction transition state and the precise conformational itinerary of the substrate during the reaction, pivotal in the design of efficient inhibitors, remain elusive for many GHs. By means of QM/MM metadynamics, we unravel the catalytic itinerary of 1,3-1,4-β-glucanase, one of the most active GHs, belonging to family 16. We show that, in the Michaelis complex, the enzyme environment restricts the conformational motion of the substrate to stabilize a (1,4)B/(1)S(3) conformation of the saccharide ring at the -1 subsite, confirming that this distortion preactivates the substrate for catalysis. The metadynamics simulation of the enzymatic reaction captures the complete conformational itinerary of the substrate during the glycosylation reaction ((1,4)B/(1)S(3) -(4)E/(4)H(3) - (4)C(1)) and shows that the transition state is not the point of maximum charge development at the anomeric carbon. The overall catalytic mechanism is of dissociative type, and proton transfer to the glycosidic oxygen is a late event, clarifying previous kinetic studies of this enzyme.  相似文献   

18.
A small library of semisynthetic analogues of fuscol and eunicol have been prepared and evaluated for in vivo topical anti-inflammatory activity using the mouse-ear edema assay. The first glycosylation of fuscol and eunicol has been achieved using a modified Koenigs-Knorr glycosylation to synthesize new fuscosides and eunicosides, a novel structural class of diterpene glycosides. The availability of adequate glycosylation methods for this synthesis was limited owing to the instability of the glycosyl acceptors. Glycosyl donor protecting group type had a pronounced effect on overall glycosylation yields of a model glycosyl acceptor. This synthesis provided access to the unnatural β-glycosides allowing for an evaluation of the effect of differing anomeric stereochemistry on anti-inflammatory activity. The PEGylated derivatives of fuscol and eunicol were also synthesized by a convenient acid-promoted solvolysis of the natural product aglycones. This work highlights the importance of the glycan portion of fuscoside B, notably the stereochemical configuration of the glycosidic linkage, in the observed anti-inflammatory activity.  相似文献   

19.
The use of amino acids for the synthesis of novel surfactants with vesicle-forming properties potentially enhances the biocompatibility levels needed for a viable alternative to conventional lipid vesicles. In this work, the formation and characterization of catanionic vesicles by newly synthesized lysine- and serine-derived surfactants have been investigated by means of phase behavior mapping and PFG-NMR diffusometry and cryo-TEM methods. The lysine-derived surfactants are double-chained anionic molecules bearing a pseudogemini configuration, whereas the serine-derived amphiphile is cationic and single-chained. Vesicles form in the cationic-rich side for narrow mixing ratios of the two amphiphiles. Two pairs of systems were studied: one symmetric with equal chain lengths, 2C12/C12, and the other highly asymmetric with 2C8/C16 chains, where the serine-based surfactant has the longest chain. Different mechanisms of the vesicle-to-micelle transition were found, depending on symmetry: the 2C12/C12 system entails limited micellar growth and intermediate phase separation, whereas the 2C8/C16 system shows a continuous transition involving large wormlike micelles. The results are interpreted on the basis of currently available models for the micelle-vesicle transitions and the stabilization of catanionic vesicles (energy of curvature vs mixing entropy).  相似文献   

20.
A natural bonding orbital (NBO) analysis of phosphate bonding and connection to experimental phosphotransfer potential is presented. Density functional calculations with the 6-311++G(d,p) basis set carried out on 10 model phosphoryl compounds verify that the wide variability of experimental standard free energies of hydrolysis (a phosphotransfer potential benchmark) is correlated with the instability of the scissile O-P bond through computed bond lengths. NBO analysis is used to analyze all delocalization interactions contributing to O-P bond weakening. Phosphoryl bond lengths are found to correlate strongest (R = 0.90) with the magnitude of the ground-state n(O) --> sigma*(O-P) anomeric effect. Electron-withdrawing interactions of the substituent upon the sigma(O-P) bonding orbital also correlate strongly with O-P bond lengths (R = 0.88). However, an analysis of sigma*(O-P) and sigma(O-P) populations show that the increase in sigma*(O-P) density is up to 6.5 times greater than the decrease in sigma(O-P) density. Consequently, the anomeric effect is more important than other delocalization interactions in impacting O-P bond lengths. Factors reducing anomeric power by diminishing either lone pair donor ability (solvent) or antibonding acceptor ability (substituent) are shown to result in shorter O-P bond lengths. The trends shown in this work suggest that the generalized anomeric effect provides a simple explanation for relating the sensitivity of the O-P bond to diverse environmental and substituent factors. The anomeric n(O) --> sigma*(O-P) interaction is also shown to correlate strongly with experimentally determined standard free energies of hydrolysis (R = -0.93). A causal mechanism cannot be inferred from correlation. Equally, a P-value of 1.2 x 10(-4) from an F-test indicates that it is unlikely that the ground-state anomeric effect and standard free energies of hydrolysis are coincidentally related. It is found that as the exothermicity of hydrolysis increases, the energy stabilization of the ground-state anomeric effect increases with selective destabilization of the high-energy O-P bond to be broken in hydrolysis. The anomeric effect therefore partially counteracts a larger resonance stabilization of products that makes hydrolysis exothermic and needs to be considered in achieving improved agreement between calculated and empirical energies of hydrolysis. The avenues relating the thermodynamic behavior of phosphates to underlying structural factors via the anomeric effect are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号