首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Abstract— We have compared the cytotoxicity of daunomycin in vitro to highly differentiated normal epithelial cells (Fisher rat thyroid cells, FRTL-5) and to two neoplastic cell lines, a thyroid carcinoma (TK-6) and its lung metastasis (MPTK-6). Whereas the cell lines are equally sensitive to the drug in the dark, if irradiated during incubation with daunomycin (86 J/cm2 at 488 nm), they become more and differently sensitive. Namely, the drug doses producing 50% mortality decrease by factors of about 22, 28 and 16 for FRTL-5, TK-6 and MPTK-6 cell lines, respectively. This result correlates with differences in drug uptake and resistance observed in the normal and neoplastic cell lines.  相似文献   

2.
In a recent clinical study we showed that hypericin accumulates selectively in urothelial lesions following intravesical administration of the compound to patients. In the present study the efficacy of hypericin as a photochemotherapeutic tool against urinary bladder carcinoma was investigated using the AY-27 cells (chemically induced rat bladder carcinoma cells). The uptake of hypericin by the cells increased by prolonging the incubation time and increasing the extracellular hypericin concentration. Photodynamic treatment of the cells incubated with 0.8 and 1.6 microM hypericin concentrations resulted in remarkable cytotoxic effects the extent of which depended on the fluence rates. Photoactivation of 1.6 microM hypericin by 0.5, 1.0 or 2.0 mW/cm2 for 15 min resulted in 3, 30 and 95% of the antiproliferative effect, respectively. Increasing the photoactivating light dose from 0.45 to 3.6 J/cm2 resulted in a five-fold increase in hypericin photodynamic activity. Irrespective of the fluence rates and irradiation times incubation of the cells with 10 microM hypericin induced rapid and extensive cell death in all conditions. The type of cell death (apoptosis or necrosis) induced by photoactivated hypericin depended largely on the hypericin concentration and the postirradiation time. At lower hypericin concentrations and shorter postirradiation times apoptosis was the prominent mode of cell death; increasing the hypericin concentration and/or prolonging the postirradiation time resulted in increased necrotic cell death. Cell pretreatment with the singlet oxygen quencher histidine, but not with the free-radical quenchers, significantly protected the cells from photoactivated hypericin-induced apoptosis, at least when a relatively low concentration (1.25 microM) was used. This result suggests the involvement of a Type-II photosensitization process. However, cells treated with higher hypericin concentrations (2.5-5 microM) were inadequately protected by histidine. Since hypericin is thus shown to be a potent and efficient photosensitizer, and since the conditions used were the same as when hypericin is used clinically to locate early-stage urothelial carcinoma lesions, hypericin may well become very important for the photodynamic treatment of superficial bladder carcinoma.  相似文献   

3.
Susceptibility of the HT-29 human colon adenocarcinoma cell line and human myeloid leukemia cell line U937 to hypericin-mediated photocytotoxicity was investigated and compared in this study. Cellular parameters as viability, cell number, metabolic activity and total protein amount were monitored in screening experiments with subsequent cell-cycle analysis and apoptosis detection to determine the cellular response of the different tumor types to various concentrations of photoactivated hypericin. The results show concentration dependence of the photosensitizer's cytotoxicity on the studied cell lines, with higher sensitivity of U937 cells. Whereas the two extreme hypericin concentrations (1 x 10(-9) M and 1 x 10(-6) M) resulted in similar changes in all tested cellular parameters on the two studied cell lines, 1 x 10(-8) M and 1 x 10(-7) M hypericin treatment resulted in different responses of the cell lines in all monitored parameters except for viability. Although leukemic cells proved sensitive to both 1 x 10(-8) M and 1 x 10(-7) M hypericin, significant changes on HT-29 cells were detected only after the 1 x 10(-7) M hypericin concentration. Cell-cycle arrest was related to simultaneously occurring apoptosis in colon cancer. Remarkable is the difference in cell-cycle profile where G2/M arrest in colon cancer cells versus accumulation of leukemic cells in the S phase appears. This suggests that hypericin treatment affecting the cell-cycle machinery of different cancer cells is not universal in effect.  相似文献   

4.
SUBCELLULAR DISTRIBUTION OF HYPERICIN IN HUMAN CANCER CELLS   总被引:2,自引:1,他引:2  
Confocal laser microspectrofluorometric measurements on human T47D mammary tumor cells have been performed to assess the intracellular distribution of hypericin within the various cell compartments: cytoplasmic membrane, cytoplasm and nucleus. Confocal fluorescence measurements obtained from microvolumes (? 1 μm3) located within the three sites of interest show that, while being primarily located in the cell membrane and cytoplasm after a short-term incubation in a 10?6M hypericin-containing culture medium, hypericin actually reaches the inside of the cell nucleus after a long-term incubation (210 min). Moreover, owing to the relative fluorescence quantum yields of hypericin determined in vitro when the molecule interacts with DNA, membrane and protein model systems, it is assumed that there is a significant accumulation of the drug into the cell nucleus. Consequently, the nucleus has to be considered as a possible target for the toxic action of hypericin.  相似文献   

5.
St. John's wort (SJW), an over-the-counter antidepressant, contains hypericin, which absorbs light in the UV and visible ranges. In vivo studies have determined that hypericin is phototoxic to skin and our previous in vitro studies with lens tissues have determined that it is potentially phototoxic to the human lens. To determine if hypericin might also be phototoxic to the human retina, we exposed human retinal pigment epithelial (hRPE) cells to 10(-7) to 10(-5) M hypericin. Fluorescence emission detected from the cells (lambda(ex) = 488 nm; lambda(em) = 505 nm) confirmed hypericin uptake by human RPE. Neither hypericin exposure alone nor visible light exposure alone reduced cell viability. However when irradiated with 0.7 J cm(-2) of visible light (lambda > 400 nm) there was loss of cell viability as measured by MTS and lactate dehydrogenase assays. The presence of hypericin in irradiated hRPE cells significantly changed the redox equilibrium of glutathione and a decrease in the activity of glutathione reductase. Increased lipid peroxidation as measured by the thiobarbituric acid reactive substances assay correlated to hypericin concentration in hRPE cells and visible light radiation. Thus, ingested SJW is potentially phototoxic to the retina and could contribute to retinal or early macular degeneration.  相似文献   

6.
Presented experiment considers combination of genistein and photodynamic therapy with hypericin with a view to achieve higher therapeutic outcome in human breast adenocarcinoma cell lines MCF-7 and MDA-MB-231, both identified in our conditions as photodynamic therapy resistant. Since genistein is known to suppress Bcl-2 expression, we predicted that photodynamic therapy with hypericin might benefit from mutual therapeutic combination. In line with our expectations, combined treatment led to down-regulation of Bcl-2 and up-regulation of Bax in both cell lines as well as to suppression of Akt and Erk1/2 phosphorylation induced by photoactivated hypericin in MCF-7 cells. Although Akt and Erk1/2 phosphorylation was not stimulated by photodynamic therapy with hypericin in MDA-MB-231 cells, it was effectively suppressed in combination. Variations in cell death signaling favoring apoptosis were indeed accompanied by cell cycle arrest in G2/M-phase, activation of caspase-7, PARP cleavage and increased occurrence of cells with apoptotic morphology of nucleus. All these events corresponded with suppression of proliferation and significantly lowered clonogenic ability of treated cells. In conclusion, our results indicate that pre-treatment with tyrosine kinase inhibitor genistein may significantly improve the effectiveness of photodynamic therapy with hypericin in MCF-7 and MDA-MB-231 breast cancer cells.  相似文献   

7.
The accumulation and interaction of hypericin with the biologically important macromolecule, low-density lipoprotein (LDL), is investigated using various steady-state and time-resolved fluorescence measurements. It is concluded that multiple hypericins can penetrate considerably deeply into the LDL molecule. Up to approximately 20 nonaggregated hypericin molecules can enter LDL; but upon increasing the hypericin concentration, the fluorescence lifetime of hypericin decreases drastically, suggesting most likely the self-quenching of aggregated hypericin. There is also evidence of energy transfer from tryptophans of the constituent protein, apoB-100, to hypericin in LDL. The results demonstrate the ability of LDL to solubilize hypericin (a known photosensitizer) in nonaggregated form, which has implications for the construction of drug delivery systems.  相似文献   

8.
In the present study, hypericin analogs with an increased hydrophilic character were synthesized. As chemical modifications alter the lipophilicity/hydrophilicity balance together with the photophysical/chemical background of the molecule the influence of these structural changes on the cellular uptake, retention and subcellular localization in HeLa cells was investigated. Besides, their photocytotoxic effects using three cell lines (HeLa, MCF-7, A431), as well as their plasma protein binding were also assessed. To assess the relative hydrophilic/lipophilic character of hypericin and analogs their retention times were determined on a reversed phase high performance liquid chromatography (C-18) column. The retention time of all the hypericin analogs was < 46 min, except for dibenzyltetramethylhypericin (118 min), while the retention time of hypericin was > 200 min (solvent system: methanol/citrate buffer 30 mM pH 7; 70/30). Hypericin, hexa-, penta- and dibenzyltetramethylhypericin displayed a potent antiproliferative effect at the nanomolar range after photosensitization (3.6 J/cm2). On the contrary, photoactivated tetrasulfonhypericin and fringelite D had no antiproliferative effect on the three cell lines, whereas hypericin polyethylene glycol showed only an intermediate cytotoxic effect on A431 cells. In dark conditions no antiproliferative effect was observed for any photosensitizer. The antiproliferative photo-effect correlated well with the intracellular accumulation as measured using HeLa cells. In general, the photocytotoxic hypericin analogs concentrated to a large extent, while the noncytotoxic compounds were not taken up by the HeLa cells. Furthermore, confocal laser microscopy revealed that all photosensitizers mainly concentrated in the perinuclear region, probably corresponding with Golgi apparatus and the endoplasmic reticulum, except for tetrasulfonhypericin which located at the plasma membrane. In addition, the plasma protein binding studies illustrated that hypericin bind extensively to the low-density lipoproteins, while the other hypericin analogs were mainly bound to heavy proteins (mostly albumin) and to a small extent to low-density lipoproteins.  相似文献   

9.
Abstract
The photodynamic effect of hypericin on EMT6 mouse mammary carcinoma cells was investigated in vitro under aerobic and hypoxic conditions. Under aerobic conditions, hypericin-induced photocytotoxicity was dose dependent within a 1–50 μ M range. Under hypoxic conditions, cells were resistant to hypericin-induced phototoxicity. In the dark, no cytotoxicity was observed at any hypericin concentration tested either aerobically or hypoxically. Cellular accumulation of hypericin, examined by chemical extraction and spectroscopy, occurred under both hypoxic and aerobic conditions. Fluorescence photomicrographs of cells exposed to hypericin corroborate drug uptake in the plasma membrane and subcellular regions. Our results demonstrate that hypericin cytotoxicity to EMT6 mouse mammary carcinoma cells in vitro is both light and oxygen-dependent. These results suggest that EMT6 cell kill caused by photoactivated hypericin is mediated by an oxygen-dependent mechanism, rather than by a type I oxygen-independent mechanism.  相似文献   

10.
The aim of this study was to determine the photodynamic antimicrobial effect of hypericin on clinically isolated Staphylococcus aureus and Escherichia coli cells. Bacterial cells (10(8) cells per mL) were incubated with hypericin (0-40 μM) for 30 min and followed by light irradiation of 600-800 nm at 5-30 J cm(-2). Cell survival was determined by colony counting, cellular hypericin uptake examined by flow cytometer, and cell membrane damage examined by scanning electron microscopy and leakage assay. The effectiveness of hypericin-mediated photodynamic killing was strongly affected by cellular structure and photosensitizer uptake. The combination of hypericin and light irradiation could induce significant killing of Gram positive methicillin-sensitive and -resistant S. aureus cells (>6 log reduction), but was not effective on Gram negative E. coli cells (<0.2 log reduction). The difference was caused by different cell wall/membrane structures that directly affected cellular uptake of hypericin.  相似文献   

11.
In this study we report the green synthesis of nontoxic and stable Cu nanoparticles (NP) using chitosan/starch hydrogel with reducing/capping ability without using any harsh reducing agents. Starch was used as a reducing agent for the synthesis of Cu NPs that was further stabilized by chitosan polymers. The in situ prepared Cu NPs/CS-Starch bio-composite were characterized by advanced physicochemical techniques like Fourier Transformed Infrared spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Energy Dispersive X-ray spectroscopy (EDX), X-ray Diffraction (XRD), UV–Vis, TGA and Inductively Coupled Plasma-Optical Emission Spectroscopic (ICP-OES) study. It has been established that Cu NPs/CS-Starch bio-composite have a spherical shape with a mean diameter from 5 to 7 nm. Cell viability of Cu NPs/CS-Starch bio-composite was very low against common human thyroid carcinoma cell lines i.e. TPC1, BCPAP and FTC133 without any cytotoxicity on normal cell line. The best anti-human thyroid carcinoma effects of Cu NPs/CS-Starch bio-composite was observed against the TPC1 cell line. For investigating the antioxidant properties of Cu NPs/CS-Starch bio-composite, the DPPH assay was used in the presence of butylated hydroxytoluene as the positive control. Cu NPs/CS-Starch bio-composite inhibited half of the DPPH molecules in the concentration of 207 µg/mL. The antioxidant activity of Cu NPs/CS-Starch bio-composite is significantly related to its anti-human thyroid carcinoma potentials. Based on to the above findings, the Cu NPs/CS-Starch bio-composite could be administrated for the treatment of several types of human thyroid carcinoma in humans.  相似文献   

12.
The exact cellular target for the potent anti-cancer agent hypericin has not yet been determined; this thus encourages the application of computational chemistry tools to be employed in order to provide insights that can be employed in further drug development studies. In the present study computational docking and molecular dynamics simulations are applied to investigate possible interactions between hypericin and the Ca(2+) pump SERCA as proposed in the literature. Hypericin was found to bind strongly both in pockets within the transmembrane region and in the cytosolic region of the protein, although the two studied isoforms of SERCA differ slightly in their preferred binding sites. The calculated binding energies for hypericin in the four investigated sites were of the same magnitude as for thapsigargin (TG), the most potent SERCA inhibitor, or in the range between TG and di-tert-butylhydroquinone (BHQ), which is also known to possess inhibitory activity. The hydrophobic character of hypericin indicates that the molecule initially binds in the ER membrane from which it diffuses into the transmembrane region of the protein and to binding pockets therein. The transmembrane TG and BHQ binding pockets provide suitable locations for hypericin as they allow for favourable interactions with the lipid tails that surround these. High binding energies were noted for hypericin in these pockets and are expected to constitute highly possible binding sites due to their accessibility from the ER membrane. Hypericin most likely binds to both isoforms of SERCA and acts as an inhibitor or, under light irradiation, as a singlet oxygen generator that in turn degrades the protein or induces lipid peroxidation.  相似文献   

13.
The photodynamic effect of hypericin on EMT6 mouse mammary carcinoma cells was investigated in vitro under aerobic and hypoxic conditions. Under aerobic conditions, hypericin-induced photocytotoxicity was dose dependent within a 1-50 microM range. Under hypoxic conditions, cells were resistant to hypericin-induced phototoxicity. In the dark, no cytotoxicity was observed at any hypericin concentration tested either aerobically or hypoxically. Cellular accumulation of hypericin, examined by chemical extraction and spectroscopy, occurred under both hypoxic and aerobic conditions. Fluorescence photomicrographs of cells exposed to hypericin corroborate drug uptake in the plasma membrane and subcellular regions. Our results demonstrate that hypericin cytotoxicity to EMT6 mouse mammary carcinoma cells in vitro is both light and oxygen-dependent. These results suggest that EMT6 cell kill caused by photoactivated hypericin is mediated by an oxygen-dependent mechanism, rather than by a type I oxygen-independent mechanism.  相似文献   

14.
We investigate the efficacy of daunomycin, some imino- and amino-substituted daunomycin analogues and the disubstituted aminoanthracenedione, mitoxantrone, in photosensitizing short-term cell kill upon irradiation in the long wavelength visible range, during incubation of Fisher rat thyroid cells with the drugs. While all compounds exhibit similar cytocidal effects on our cell line, in the absence of irradiation, administering 86 J/cm2 at wavelengths either coincident or close to drug absorption peaks causes greater enhancement in cell mortality for the 4-demethoxydaunomycin analogues than either the parent drug or its 5-imino-derivative. A lower enhancement is observed with mitoxantrone. In particular, C50 doses (i.e. concentrations that would kill 50% cells) as low as approximately 10(-9) M are found for both 6- and 11-amino 4-demethoxydaunomycin, compared with the values obtained in the absence of light, which are 2.59 x 10(-4) and 0.43 x 10(-4) M, respectively. Our previous studies of the photophysical and photochemical properties of the excited states of these drugs, and ESR and spin trapping studies of photosensitized generation of singlet oxygen, which were extended in this work to include mitoxantrone, indicate that the cytocidal effects proceed via type I rather than type II mechanisms.  相似文献   

15.
Efficacy of ionizing radiation (I/R) was compared with phototoxic effects of photodynamic therapy (PDT) in vitro using two cell lines derived from patients with head and neck squamous cell carcinoma (HNSCC). A cell line derived from a donor with a human papilloma virus (HPV) infection was more responsive to I/R but significantly less responsive to PDT than a cell line derived from an HPV-free patient. Cell death after I/R in the HPV(+) cell line was associated with increased DEVDase activity, a hallmark of apoptosis. The HPV(−) line was considerably less responsive to I/R, with DEVDase activity greatly reduced, suggesting an impaired apoptotic program. In contrast, the HPV(−) cells were readily killed by PDT when the ER was among the targets for photodamage. While DEVDase activity was enhanced, the death pathway appears to involve paraptosis until the degree of photodamage reached the LD99 range. These data suggest that PDT-induced paraptosis can be a death pathway for cells with an impaired apoptotic program.  相似文献   

16.
We have investigated the photoactivating effect of hypericin on two cancer cell lines: PC-3, a prostatic adenocarcinoma non-responsive to androgen therapy and LNCaP, a lymphonodal metastasis of prostate carcinoma responsive to androgen therapy. The two cell lines are incubated for 24 h with hypericin at concentrations ranging from 0.001 to 0.3 microg/ml in cell culture medium. The cells are irradiated at 599 nm (fluence = 11 J/cm2) using a dye laser pumped by an argon laser. Hypericin exerts phototoxic effects on both cell lines, while it does not produce toxic effects in the absence of irradiation. These results suggest that photodynamic therapy (PDT) with hypericin could be an alternative approach to the treatment of prostatic tumors, and could be beneficial in tumors that are non-responsive to androgen therapy.  相似文献   

17.
Hypericin is a naturally occurring photosensitizer, whose presence in plants has been responsible for cutaneous phototoxicity in grazing animals. The photosensitizing properties of this agent have recently been exploited in models for anti-tumor and anti-viral activity. The cytotoxicity of hypericin and light was assessed in 3T3 mouse fibroblasts using the MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide)] assay and the lactate dehydrogenase (LDH) leakage assay. Membrane damage was assessed in swine erythrocytes using hemolysis, potassium (K+) leakage and formation of lipid hydroperoxides. Concentration- and light-dependent decreases in fibroblast viability were seen starting at hypericin concentrations of 1.25 μM and light power flux levels of 24 J/cm2 using a visible light source and at 0.417 μM hypericin and a similar light dose using a solar simulator, No LDH leakage was observed at hypericin concentrations up to 30 μM and visible light up to 144 J/cm2. Light-and/or concentration-dependent increases in hemolysis, K+ leakage and formation of lipid hydroperoxides in red blood cell (RBC) membranes were observed, but at concentrations and light doses much greater than those required to induce cytotoxicity in fibroblasts. Lipid peroxidation and hemolysis occurred at 15 μM hypericin and 24 J/cm2 (visible light source). Potassium ion leakage occurred at concentrations and light levels as low as 5 μM and 12 J/cm2 or 15 μM and 4.8 J/cm2 (visible light source) but was still a less sensitive indicator than fibroblast cytotoxicity. Evidence for both type I and type II reactions was shown in RBC membranes by TLC analysis of cholesterol products. In the absence of light, hypericin appears to be relatively nontoxic in the models tested.  相似文献   

18.
Hypericin has been reported as a potent photosensitizing agent exhibiting antiviral, antibacterial, antineoplastic activities. Although its photophysics and mode of action are strongly modulated by the binding protein, detailed information about its mechanism of interaction with possible cellular targets, including proteins, is still lacking. Previous in vitro studies demonstrated that hypericin can be uptaken by intact lens and is able to bind to the major lens protein "α-crystallin." In this study, the mechanism of interaction of this potent drug with α-crystallin was studied using the chemical denaturant guanidine hydrochloride (GdnHCl) and the hydrophobic surface probe, 8-anilino-1-naphthalenesulfonic acid (ANS). Fluorescence measurements showed that the increased exposure of tryptophan resulting from partial unfolding of α-crystallin incubated with 1.0 mol L−1 of GdnHCl corresponds to the maximum accessibility of hydrophobic sites to ANS at the same GdnHCl concentration. Interestingly at this additional hydrophobicity of the protein, hypericin exhibited its maximum fluorescence intensity. This in vitro study implied that hydrophobic sites of α-crystallin play a significant role in its interaction with hypericin. The binding between α-crystallin and hypericin was found to be enhanced by partial perturbation of the protein.  相似文献   

19.
The photodynamic drug, hypericin, is studied in fetal rat neurons using fluorescence microscopy. Hypericin has an extremely high affinity for the cell membrane and is found to a smaller extent in the nucleus. Fluorescent excitation of hypericin is shown to cause irreversible damage to the cell membranes of living neurons. Fixed cells were used to make ultrafast time-resolved measurements to avoid the deleterious effects of long-term exposure to intense light and room temperatures. To our knowledge, these are the first ultrafast time-resolved measurements of the fluorescence lifetime of hypericin in a subcellular environment. Nonexponential fluorescence decay is observed in hypericin in the neurons. This nonexponential decay is discussed in terms of other examples where nonexponential decay is induced in hypericin upon its binding to biomolecules. The nonradiative processes giving rise to the nonexponential hypericin decay are attributed to excited-state electron transfer, excited-state proton transfer or both.  相似文献   

20.
The Role of Oxygen in the Antiviral Activity of Hypericin and Hypocrellin   总被引:7,自引:0,他引:7  
The light-induced antiviral activity of hypericin and hypocrellin in the presence and absence of oxygen was examined under experimental conditions where the effect of oxygen depletion could be quantified. There was a significant reduction of light-induced antiviral activity of hypericin and hypocrellin under hypoxic conditions. Interestingly, antiviral activity of hypocrellin was not observed at low oxygen levels at which hypericin retained measurable virucidal activity. This suggests that additional pathways, such as the generation of protons from excited states of hypericin, may enhance the biological activity of activated oxygen species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号