首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ruthenium (Ru), thermally deposited on a integrated platform graphite furnace, was investigated as a permanent modifier for the determination of Aluminum (Al) in blood serum and urine by electrothermal atomic absorption spectrometry (ETAAS). The platform was treated with 500 μg of Ru as previously described. The pyrolysis and atomization temperatures for each material were of 1300 and 2300 °C, for serum sample and of 1000 and 2400 °C, for urine. The characteristic mass were of 31 and 33 pg for Al in serum sample and urine, respectively (recommended of 31 pg for Al in nitric acid 0.2% (v/v)). For this reason, the calibration was made with aqueous solutions for both the samples. Calibration curves presented r of 0.99145 and 0.99991 for serum and urine, respectively. With the optimized temperatures, being analyzed eight spiked blood serum samples, the recovery was between 95.90 and 113.50%. Two certified urines samples were analyzed with good agreement between experimental and reference values. In both the samples the R.S.D. were <5% (n=3). The detection limit (k=3, n=10) was of 0.40 μg of Al per liter for both the samples. The absorption pulses obtained were symmetrical, with very low background and without interferences. The life time of the tube-platform was higher than 600 cycles of atomizations for both the urine and serum samples.  相似文献   

2.
In this work, tetramethylammonium hydroxide (TMAH) was used to solubilize the DORM-1 dogfish muscle certified reference material as a model substance for the determination of As, Cd, Pb and Se by electrothermal atomic absorption spectrometry (ET AAS). The sample was mixed with a small amount of TMAH and heated to 60 °C for 10 min in a water bath. After dissolution, As and Se were determined using palladium and magnesium nitrates as a chemical modifier added in solution. For Cd and Pb, best results were obtained with a mixture of 250 μg of each of iridium and rhodium as permanent modifiers. In both cases, the calibration was performed with aqueous solutions in 0.2% v/v HNO3. The temperature program for each analyte was optimized using pyrolysis and atomization curves established with the fish reference material. The detection limits in dry samples and the characteristic mass values were: Cd 0.005 μg g−1 and 0.9 pg; Pb 0.04 μg g−1 and 7.6 pg; As 0.4 μg g−1 and 13 pg and Se 0.6 μg g−1 and 20 pg, respectively. Results from the determination of these elements in the DORM-1 certified fish reference material were within the 95% confidence interval of the certified values.  相似文献   

3.
Lima EC  Brasil JL  Vaghetti JC 《Talanta》2003,60(1):103-113
Single noble metal permanent modifiers such as, Rh, Ir, and Ru, as well as mixed tungsten plus noble metal (W-Rh, W-Ru, W-Ir) permanent modifiers thermally deposited on the integrated platform of transversally heated graphite atomizer were employed for the determination of arsenic in sludges, soils, sediments, coals, ashes and waters by electrothermal atomic absorption spectrometry. Microwave digests of solid samples and water samples were employed for obtaining the analytical characteristics of the methods with different permanent modifiers. The performance of the modifiers for arsenic determination in the real samples depended strongly on the type of permanent modifier chosen. The single noble metal (Rh, Ir and Ru) permanent modifiers were suitable for the analyte determinations in simpler matrices such as waters (recoveries of certified values 95-105%), but the analyte recoveries of certified values in sludges, soils, sediments, coals, and ashes were always lower than 90%. On the other hand, for the determination of arsenic, using W-Rh, W-Ru, and W-Ir permanent modifiers presented recoveries of certified values within 95-105% for all the samples. Long-term stability curves obtained for the determination of arsenic in environmental samples with different permanent modifiers (Rh, Ir, Ru, W-Rh, W-Ir, W-Ru) showed that the improvement in the tube lifetime depends on the tungsten deposit onto the platform. The tungsten plus noble metal permanent modifier presents a tube lifetime of at least 35% longer when compared with single permanent modifier. The results for the determination of As employing different permanent modifiers in the samples were in agreement with the certified reference materials, since no statistical differences were found after applying the paired t-test at the 95% confidence level.  相似文献   

4.
Pereira LA  Amorim I  da Silva JB 《Talanta》2006,68(3):771-775
A procedure for the determination of cadmium, chromium, and lead in marine sediment slurries by electrothermal atomic absorption spectrometry is proposed. Slurry was prepared by mixing 10 mg of ground sample with particle size smaller than 50 μm completed to the weight of 1.0 g with a 3% nitric acid and 10% hydrogen peroxide solution. The slurry was maintained homogeneous with an aquarium air pump. For cadmium, the best results were obtained using iridium permanent with optimum pyrolysis and atomization temperatures of 400 and 1300 °C, respectively, a characteristic mass, mo (1% absorption), of 2.3 pg (recommended 1 pg). Without modifier use, zirconium, ruthenium, and rhodium mo were 3.4, 4.1, 4.6, and 4.8 pg, respectively. For chromium, the most sensitive condition was obtained with zirconium permanent with optimum pyrolysis and atomization temperatures of 1500 and 2500 °C, mo of 6.6 pg (recommended 5.5 pg); and without modifier use, rhodium, iridium, and ruthenium mo were 5.3, 8.8, 8.8, and 8.9 pg, respectively. For lead, the best modifier was also zirconium, mo of 8.3 pg for the optimum pyrolysis and atomization temperatures of 600 and 1400 °C, respectively, (recommended mo of 9.0 pg). For iridium, ruthenium, without modifier, and rhodium, mo were 14.7, 15.5, 16.5, and 16.5 pg, respectively. For all the modifiers selected in each case, the peaks were symmetrical with r2 higher than 0.99. Being analyzed (n = 10), two marine sediment reference materials (PACS-2 and MESS-2 from NRCC), the determined values, μg l−1, and certified values in brackets, were 2.17 ± 0.05 (2.11 ± 0.15) and 0.25 ± 0.03 (0.24 ± 0.01) for cadmium in PACS-2 and MESS-2, respectively. For chromium in PACS-2 and MESS-2 the values were 94.7 ± 5.6 (90.7 ± 4.6) and 102.3 ± 10.7 (106 ± 8), respectively. Finally, for lead in PACS-2 and MESS-2, the results obtained were 184 ± 7 (183 ± 8) and of 25.2 ± 0.40 (21.9 ± 1.2), respectively. For cadmium and lead in both samples and chromium in PACS-2, calibration was accomplished with aqueous calibration curves. For chromium in MESS-2, only with the standard addition technique results were in agreement with the certified ones. The limits of detection (k = 3, n = 10) obtained with the diluents were 0.1, 3.4, and 3.6 μg l−1 for cadmium, chromium, and lead, respectively.  相似文献   

5.
In order to better characterise a permanent modifier based on iridium deposited on zirconium or tungsten treated platforms of transversely heated graphite atomizer, and to gain additional information about its chemical behavior directed to an eventual further optimization, a series of experiments were carried out, both by surface techniques such as scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS or ESCA) and X-ray fluorescence (XRF) and by electrothermal atomic absorption spectrometry on the iridium release from unmodified and various other modified pyrolytic graphite platforms. Special attention was paid to the influence of the amount of iridium, zirconium carbide coating of the platform surface and the presence of citric acid on the iridium vaporization during pyrolysis and atomization. The processes of iridium losses during pyrolysis and atomization and peak maximum alignment depend on the amount of the iridium deposited on the pyrolytic graphite coated platforms in the presence of nitric acid. A fractional order of release which suggests an atom vaporization from the surface or edges of the iridium islands was estimated. In the presence of citric acid, mass independence and zero order of the atom release were found. The zirconium treatment of the platform results in change of the spatial distribution of iridium and hence its vaporization. Vaporization temperatures as high as 2100°C, and first order of the process of atom generation were obtained. While it was possible to study the iridium atomization from uncoated and zirconium coated surfaces, evidencing a different order for the release process, the same was not possible for the tungsten coated platforms due to an ‘overstabilization’ that brought the iridium atomization temperature out of the working range of the instrument used. The different chemical behavior of tungsten and zirconium was also confirmed by XPS investigations. With tungsten, evidence of both W---C and W---O bonding was found, while zirconium on the contrary shows only Zr---O bonding and no evidence of carbide bonding. The SEM revealed a highly dispersed distribution of spot-like features whose smallest average diameter was of the order of 0.1 μm. The XRF asserted the confinement of iridium in these features and a strict association with zirconium in the case of zirconium treated surfaces. It is worth mentioning that such structure was preserved also after 400 thermal cycles simulating an atomization step at 1900°C despite a quite evident deterioration of the graphite surface, thus confirming the excellent durability of this modifier.  相似文献   

6.
The feasibility of Ru as a permanent modifier for the determination of Cd in biological samples treated with tetramethylammonium hydroxide (TMAH) by ET AAS was investigated. The tube treatment with Ru was carried out only once and lasted for about 300 atomization cycles. The pyrolysis and atomization temperatures, 750 °C and 1300 °C, respectively, were chosen from the temperature curves. The sample dissolution procedure was very simple: a sample aliquot was mixed with a small volume of a 25% m/v TMAH solution, the volume was made up to 50 ml and the mixture was kept at 60 °C for 1 h. Six certified biological reference materials were analyzed and the obtained Cd concentrations are within the 95% confidence interval of the certified values, proving the accuracy of the proposed procedure for a variety of biological samples. The calibration curve, with correlation coefficient higher than 0.99, was established for a working range up to10 μg l−1. The precision was good as demonstrated by relative standard deviations below 3%, except for one sample. The limit of detection (3σ) was 0.05 μg l−1 and the characteristic mass was 1.30 pg, obtained in the presence of the Ru modifier.  相似文献   

7.
This paper reports the determination of arsenic and antimony in naphtha by employing electrothermal atomic absorption spectrometry (ETAAS) as the analytical technique. In order to promote the direct determination of the analytes in the very volatile naphtha, the formation of a microemulsion with different surfactants (Triton X-100 and Brij-35) and different chemical modification strategies were tested. The results indicated that Triton X-100 is the best emulsification agent for naphtha in both As and Sb determination when it is employed at a concentration of 1% w/v in the microemulsion. Under these conditions, the microemulsion was stabile for at least 2 h. By using Brij-35 it was possible to achieve good stability only in the first 15 min. Among all chemical modification approaches investigated (Ir permanent modifier, W-Ir permanent modifier, and Pd modifier), the Ir permanent modifier provided better sensitivity for both analytes and allowed a higher pyrolysis temperature, which decreased the background signals at lower levels. Under the best conditions established in this work, an RSD of 4.6% (20 g L–1) and a detection limit of 2.7 g L–1 were observed for arsenic. For antimony, an RSD of 4.0% (20 g L–1) and a detection limit of 2.5 g L–1 were obtained. The accuracy of the procedure was assessed by analyzing spiked samples of naphtha from different origins.  相似文献   

8.
Fan Z 《Analytica chimica acta》2007,585(2):300-304
A simple and sensitive method for using electrothermal atomic absorption spectrometry (ET AAS) with Rh as permanent modifier determination of Sb(III) and total Sb after separation and preconcentration by N-benzoyl-N-phenylhydroxylamine (BPHA)-chloroform single drop has been developed. Parameters, such as pyrolysis and atomization temperature, solvent type, pH, BPHA concentration, extraction time, drop size, stirring rate and sample volume were investigated. Under the optimized experimental conditions, the detection limits (3σ) were 8.0 ng L−1 for Sb(III) and 9.2 ng L−1 for total Sb, respectively. The relative standard deviations (R.S.Ds.) were 6.6% for Sb(III) and 7.1% for total Sb (c = 0.2 ng mL−1, n = 7), respectively. The enrichment factor was 96. The developed method has been applied successfully to the determination of Sb(III) and total Sb in natural water samples.  相似文献   

9.
Different chemical modifiers for use with electrothermal atomic absorption spectrometry (ET AAS) were investigated in relation to determining the selenium in human urine samples. The samples were diluted in a solution containing 1% v/v HNO3 and 0.02% m/v cetyltrimethylammonium chloride (CTAC). Studying the modifiers showed that the use of either Ru or Ir as the permanent modifier gave low sensitivity to Se and the peak shape was very noisy, while Zr or Rh gave no peak at all. The same occurred when Zr was used in solution. For mixtures of permanent modifiers, Ir plus Rh or Zr plus Rh gave very low sensitivity, Zr plus Rh with co-injection of Ir in solution was also not efficient, Zr plus Rh in solution gave good sensitivity, but the best results were obtained with a mixture of Zr and Rh as the permanent modifier and co-injection of Rh in solution. Using this last modifier, the following dilutions with the HNO3 and CTAC were studied: 1:1, 1:2, 1:3 and 1:4. The best dilution was 1:1, which promoted good sensitivity and a more defined peak shape and made it possible to correct for the background using a deuterium arc lamp. Under these conditions, a characteristic mass of 26±0.2 pg was obtained for Se in aqueous solution. Six certified urine samples were analyzed using matrix matching calibration and the measured concentrations were in agreement with the certified values, according to a t-test at the 95% confidence level. Recovery tests were carried out and the recoveries were in the range 100–103%, with relative standard deviation better than 9%. The limit of detection (LOD, 3 sd, n=10) was 3.0 μg L−1 in the sample. The treated graphite tube could be used for at least 600 atomization cycles without significant alteration of the analytical signal.  相似文献   

10.
Viitak A  Volynsky AB 《Talanta》2006,70(4):890-895
Electrothermal atomic absorption spectrometry was used for the determination of Cd, Pb, As and Se in the whole blood, serum, hair reference standard materials and the samples of algae collected at the coastal Estonian regions of Baltik sea. Instead of tedious and time-consuming experimental comparison of various chemical modifiers, theoretical consideration of the problem was applied for choosing the most prospective one (colloidal Pd) for solution of the given task. The experimental data obtained proved correctness of the choice. Pure standard solutions in diluted nitric acid were used for construction of the calibration graphs. The same experimental conditions were applied for each analyte for calibration solutions and all samples studied. In spite of very limited optimization procedures used, all the values obtained agree well with the corresponding reference values. Accuracy of the analysis of the algae samples was checked by recoveries of the spikes that were in the region 91-109%. Detection limits reached are 0.021, 1.2, 0.62 and 1.1 ng ml−1 for Cd, Pb, As and Se, respectively, in digests of biological samples.  相似文献   

11.
The present work reports the development of a methodology for the direct determination of lead in high saline waters derived from petroleum exploration employing electrothermal atomic absorption spectrometry with permanent Ir-W and HF as modifiers. These waters, so-called produced waters, have complex composition containing several types of organic and inorganic substances. In order to attain best conditions (highest analytical signal besides lowest background) for the methodology studies about the effect of several variables and the convenient calibration strategy were performed. Also, the efficiency of other modification approaches was evaluated. At best conditions, pyrolysis and atomization temperature were 800 and 2200 °C, respectively, when the modifiers cited above were utilized. Obtained results indicate that, in this kind of sample, lead can be determined by standard addition method or employing external calibration with standard solutions prepared in 0.8 mol l−1 NaCl medium. In order to evaluate the accuracy of the procedure, a recovery test was performed with six spiked samples of produced waters. The detection limit, quantification limit and the relative standard deviation in 0.8 mol l−1 NaCl were also calculated and the values are 1.5 μg l−1, 5.0 μg l−1 and 5.0% (at 10 μg l−1 level), respectively.  相似文献   

12.
A flow system was coupled to a graphite furnace with a platform coated with tungsten-rhodium permanent chemical modifier for in-line separation and preconcentration of copper by employing a minicolumn loaded with 1-(2-tiazolylazo)-2-naphthol (TAN) immobilized on C18-bonded silica fixed in the tip of the autosampler arm. Elution was made by sampling 35 μl of 0.50 mol l−1 HCl with further delivering into a coated platform. Remarkable improvements in both selectivity and sensitivity were observed. Copper(II) was effectively separated from solutions containing up to 20 g l−1 Na+; 10 g l−1 K+, Ca2+ and Mg2+; 1.0 g l−1 Fe3+ and Zn2+. For a sample flowing at 3.0 ml min−1 and a loading of 60 s, the detection limit was estimated as 5 ng l−1 Cu(II) at the 99.7% confidence level, and an enrichment factor of 33 was calculated. Coefficient of variation was estimated as 4% for a 0.30 μg l−1 copper solution (n=20). The W-Rh permanent chemical modifier was used to improve system stability, analytical performance and atomizer lifetime. More than 1500 firings were carried out with the same atomizer without significant variations in sensitivity and precision. On account of the reagent immobilization, its consumption was lower than 0.2 μg per determination. In addition, TAN purification was unnecessary.  相似文献   

13.
Electrothermal atomization of beryllium from graphite and tungsten surfaces was compared with and without the use of various chemical modifiers. Tungsten proved to be the best substrate, giving the more sensitive integrated atomic absorption signals of beryllium. Tungsten platform atomization with zirconium as a chemical modifier was used for the determination of beryllium in several NIST SRM certified reference samples, with good agreement obtained between the results found and the certified values. The precision of the measurements (at 10 μg L−1), the limit of detection (3σ), and the characteristic mass of beryllium were 2.50%, 0.009 μg L−1 and 0.42 pg, respectively.  相似文献   

14.
A method was developed for the quantitative determination of total vanadium concentration in mussels via electrothermal atomic absorption spectrometry (ETAAS). After the microwave digestion of the samples, a program using temperatures of 1600 °C and 2600 °C for ashing and atomization respectively, without any matrix modifiers, allowed us to obtain results that were satisfactory since they agreed closely with certified reference material values. The detection limit was 0.03 mg kg–1 (dry weight), indicating that the method is suitable for the analysis of mussel samples. This determination was compared with matrix modifiers that have been reported previously. The method was applied to various cultivated and wild mussels from the Galician coast, yielding levels below 1 mg kg–1 (wet weight).  相似文献   

15.
A number of chemical modifiers have been assessed for the direct determination of indium in soils using electrothermal atomic absorption spectrometry and slurry sampling. The best results were obtained when the graphite atomizer was impregnated with sodium tungstate, which acts as a permanent chemical modifier. Slurries were prepared by suspending 100 mg sample in a solution containing 1% (v/v) concentrated nitric acid and 10% (v/v) concentrated hydrofluoric acid and then 15-microL aliquots were directly introduced into the atomizer. Standard indium solutions prepared in the suspension medium in the range 4-80 microg L(-1) indium were used for calibration. The relative standard deviation for ten consecutive measurements of a 40 microg L(-1) indium solution was 2.8%. The limit of detection in soils was 0.1 microg g(-1). The reliability of the procedures was confirmed by analysing two standard reference materials and by using an alternative procedure.  相似文献   

16.
For comparison of action of mixed permanent modifiers Ir/Nb and Ir/W, the influence of the amounts of modifier components was studied and the atomic absorption pyrolysis and atomization curves were determined with different modifiers. The optimum amounts of modifier components were 30 μg Ir and 40 μg of Nb that were deposited onto the L'vov platform in advance to analytical measurements. The long-term performance of the Ir and Nb permanent modifiers was derived from the investigations by scanning electron microscopy and energy dispersive X-ray spectrometry. The soil and sediment slurries were prepared in 4% hydrofluoric acid and 6% suspension of polytetrafluoroethylene in order to remove the high concentration of silica during the pyrolysis step of 900 °C. The calibration was made by using aqueous standards. The analysis of certified reference materials confirmed the accuracy and reliability of the proposed analytical approach. The precision of Sb determination was characterized with less than 6% RSD.  相似文献   

17.
The mechanism of aluminium spike formation and dissipation of aluminium atoms in electrothermal atomization absorption spectrometry has been investigated using two different approaches. The first approach employs a graphite electrothermal atomizer coupled to an inductively coupled plasma mass spectrometer (ICP-MS) in a configuration that allows simultaneous measurement of atomic, or molecular, absorption signals and mass spectrometric signals. Aluminium sub-oxide (AlO and Al2O) and CO(g) spikes in ICP-MS are correlated with the appearance of both Al atom spikes and Al-containing molecule spikes in absorption spectrometry. The aluminium carbide (AlC2) signal in ICP-MS is not coincident with the appearance of either Al atom spikes or Al-containing molecule spikes in absorption spectrometry. The second approach uses two different imaging systems, i.e. shadow spectral filming (SSF) and shadow spectral digital imaging (SSDI), to provide temporally and spatially resolved absorption profiles of Al atoms and Al-containing molecules during Al spike formation and dissipation. The transverse cross-sectional distribution of Al atoms and of Al-containing molecules in the graphite furnace are complementary to one another for both wall and platform atomization. The highest concentration of Al atoms is near the graphite surface, whereas the highest concentration of Al-containing molecular species is at the centre of the graphite tube. The Al-containing molecules observed in both wall and platform atomization consist of both gaseous Al-molecules and a non-uniformly distributed cloud of finely dispersed Al2O3(s,1) particles. A mechanism of formation that is consistent with the above experimental observations is presented. It is proposed that Al atom spikes are formed from gaseous Al2O precursors and that this reaction is triggered by the formation of a molten, condensed-phase Al4C3 melt.  相似文献   

18.
Matousek JP  Money SD  Powell KJ 《Talanta》2000,52(6):1446-1122
The technique of coupled in situ electrodeposition–electrothermal atomic absorption spectrometry (ED–ETAAS) is applied to the analytes Bi, Pb, Ni and Cu. Bi, Pb, Ni and Cu are deposited quantitatively from their EDTA complexes at Ecell=1.75, 2.0, 3.0 and 2.5 V, respectively (Ecell=EanodeEcathode+iR). By varying the cell potential, selective reduction of free metal ions could be achieved in the presence of the EDTA complexes. For Bi3+ and Pb2+ this utilised the voltage windows Ecell=0.6–1.0 and 1.8–2.0 V, respectively. For Ni, deposition at Ecell=1.7–2.0 V achieved substantial, but not complete, differentiation between Ni2+ (ca. 90–100% deposition) and Ni(EDTA)2− (ca. 12–20% deposition). An adequate voltage window was not obtained for Cu. The ability of ED–ETAAS to differentiate between electrochemically labile and inert species was demonstrated by application of both ED–ETAAS and anodic stripping voltammetry to the time-dependent speciation of Pb in freshly mixed Pb2+–NaCl media. Application to natural water samples is complicated by adsorption of natural organic matter to the graphite cathode.  相似文献   

19.
电热原子吸收光谱分析法(ETAAS)灵敏度高、操作简便,是测定痕量铅的常用分析方法之一。铅及其化合物易挥发,在热解预处理阶段损失严重。对于某些样品,基体干扰较为复杂,需要选择合适的化学改进剂,如硝酸镁、磷酸、硫脲、磷酸氢二铵、磷酸二氢铵、钯盐等。现有许多测定铅  相似文献   

20.
M. Vilar 《Talanta》2007,71(4):1629-1636
Different analytical methods for the determination of lead in Orujo spirits by electrothermal atomic absorption spectrometry (ETAAS) were developed using permanent modifiers (W, Ir, Ru, W-Ir and W-Ru) thermally deposited on platforms inserted in pyrolitic graphite tubes and Pd-Mg(NO3)2 conventional modifier mixture. In all cases, the Pb determination was performed without any sample pretreatment or preconcentration steps. The comparison between the chemical modifiers employed has been made in terms of pyrolysis and atomization temperatures, characteristic masses, detection limits, and atomization and background signal shapes. The limits of detection obtained were 0.375, 0.387, 0.109, 0.251 and 0.267 ng mL−1 for W, Ir, Ru, W-Ir and W-Ru, respectively and 0.710 ng mL−1 for Pd-Mg(NO3)2. The characteristic masses were 14.1, 11.2, 5.6, 8.3 and 9.3 pg for W, Ir, Ru, W-Ir and W-Ru, respectively and 22.2 pg for Pd-Mg(NO3)2. For all the developed procedures using the different modification systems, the relative standard deviations (<10%) and the analytical recoveries (95-103%) were acceptable. The more suitable methods for Pb determination in distillate spirits were those using permanent modifiers in contrast with classical Pd-Mg(NO3)2. The best analytical performance was achieved for W, Ir and W-Ir methods, which were applied to lead determination in Orujo spirit samples from Galicia (NW Spain). The Pb concentrations found in the analyzed samples were comprised in the range (<LOD to 1.5 μg mL−1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号