首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
甲壳素和壳聚糖作为天然生物高分子材料的研究进展   总被引:9,自引:0,他引:9  
甲壳素是自然界中含量仅次于纤维素的天然高分子,壳聚糖是甲壳素脱乙酰化后带有阳离子的多糖.壳聚糖中的自由氨基以及它的高结晶性,使得它能溶于酸,而不溶于碱和绝大数的有机溶剂.同时壳聚糖具有无毒性、无刺激性、良好的生物相容性、生物可溶解性, 以及高的电荷密度,因而被作为一种新型的天然生物材料得到广泛应用.文章介绍了甲壳素和壳聚糖的结构和性质,综述分析了甲壳素和壳聚糖在制备微球和作为支架材料中的应用, 并总结了甲壳素和壳聚糖在这两个方面存在的问题和发展前景.  相似文献   

2.
ABSTRACT

Chitin and chitosan are versatile polymers, where the interest in chitosan is due to the large variety of useful forms that are commercially available or can be made available. Chitin basically is obtained from prawn/crab shells; chemical treatment of chitin produces chitosan. This article surveys applications of chitin and chitosan in various industrial and biomedical fields.  相似文献   

3.
Chitin and chitosan are natural polymers extracted from various plants and animals. In recent years, these two polymers have attracted much interest because of their biodegradability, biocompatibility, wound-healing acceleration and many other unique properties. As a natural renewable resource, they offer many potential applications in a number of diversified fields. Chitin and chitosan fibers have been found useful as a biomaterial for potential applications such as sutures and wound dressings. This article presents a brief introduction to the properties of chitin and chitosan, and reviews the various attempts for the production of fibers from the two polymers. © 1997 John Wiley & Sons, Ltd.  相似文献   

4.
Chitin is a polysaccharide found in abundance in the shell of crustaceans. In this study, the protease from Bacillus cereus SV1 was applied for chitin extraction from shrimp waste material of Metapenaeus monoceros. A high level of deproteinization 88.8% ± 0.4 was recorded with an E/S ratio of 20. The demineralization was completely achieved within 6 h at room temperature in HCl 1.25 M, and the residual content of calcium in chitin was below 0.01%. 13C CP/MAS-NMR spectral analysis of chitin prepared by the enzymatic deproteinization of shrimp wastes was found to be similar to that obtained by alkaline treatment and to the commercial α-chitin. The degree of N-acetylation, calculated from the spectrum, was 89.5%. Chitin obtained by treatment with crude protease from B. cereus was converted to chitosan by N-deacetylation, and the antibacterial activity of chitosan solution against different bacteria was investigated. Results showed that chitosan solution at 50 mg/mL markedly inhibited the growth of most Gram-negative and Gram-positive bacteria tested. Furthermore, the antioxidant potential of the protein hydrolysates obtained during enzymatic isolation of chitin was evaluated using various in vitro assays. All the samples exerted remarkable antioxidant activities. These results suggest that enzymatic deproteinization of the shrimp shell wastes, using B. cereus SV1 protease, could be applicable to the chitin production process.  相似文献   

5.
Biopolymers like cellulose, polysaccharides, chitosan, starch, chitin, and alginates have sparked an increasing curiosity in creating natural replacements for synthetic polymers during the last several decades. Chitin is a major part of fungi’s cell walls, the crustaceans’ exoskeletons, like lobsters, crabs, and shrimps, cephalopod beaks, the radulae of mollusks, and fish and lissamphibians scales. Since the late 1970 s, biopolymer chitosan has gathered interest in basic science and applied research due to its incredible macromolecular framework, physicochemical properties, and biological activities, which differ from those of synthetic polymers. Chitin and derivatives thereof have practical usages in chemistry, the agriculture sector, medicine, cosmetics, as well as textile and paper industries. Chitosan has also received a lot of recent interest in the fields of dentistry, ophthalmology, veterinary science, biomedicine, the drink industry, hygiene and personal care, catalysis, chromatography, sewage treatment, and biotechnology. Numerous fundamental investigations have been conducted on chitin and chitosan. This article presents a short compact summary of research over the last two decades in an attempt to highlight the works on chitin and chitosan applications.  相似文献   

6.
Chitin 1 is a biodegradable and nontoxic polysaccharide widely spread among marine and terrestrial invertebrates and fungi. It is usually obtained from waste materials of the sea food-processing industry, mainly shells of crab, shrimp, prawn and krill. Native chitin occurs in such natural composite materials usually combined with inorganics, proteins, lipids and pigments. Its isolation calls for chemical treatments to eliminate these contaminants, some of which maybe coimmercially explored. By treating crude chitin with aqueous 40~50% sodium hydroxide at 110~115℃ chitosan is obtained. However, the fully deacetylated product is rarely obtained due to the risks of side reactions and chain deplolymerization. Chitosan and chitin are closely related since both are linear polysaccharides containing 2-acetamido-2-deoxy-D-glucopyranose and 2-amino-2-deoxy-D-glucopyranose units joined by β (1→4) glycosidic bonds. They can be distinguished by their contents of the above-mentioned units and by their solubilities in aqueous media. The acetylated units predominate in chitin while chitosan chains contain mostly deacetylated units. Chitin is soluble in a very limited number of solvents while chitosan is soluble in aqueous dilute solutions of a number of mineral and organic acids, being the most common ones, the hydrochloric and acetic acids. In aqueous dilute acid media chitosan forms salts, producing polyelectrolyte chains bearing positive charges on the nitrogen atoms of their amine groups. In fact the salt of chitosan may be formed in a separate step or as a consequence of the presence of acid in the water suspension of the neutralized form of chitosan.  相似文献   

7.
甲壳素基新材料研究进展   总被引:7,自引:0,他引:7  
甲壳素/壳聚糖良好的生物相容性、生物可降解性及独特的生理活性使其成为非常有应用价值的天然高分子材料,当前已成为新材料领域的研究热点.甲壳素/壳聚糖具有良好的可加工性能,可固定贵金属、半导体纳米材料等活性催化物质,同时其本身也具有催化作用,是一类绿色环境友好的高分子催化材料.良好的生物相容性和生物可降解性使甲壳素/壳聚糖...  相似文献   

8.
Cisplatin (CDDP) containing albumin microspheres and microcapsules incorporating biodegradable macromolecules, chitin and chitosan, were prepared, and their CDDP content and releasing ability and susceptibility to various enzymes were examined. Chitin was incorporated during preparation of the microspheres, while chitosan was used to treat preformed microspheres. CDDP content was remarkably increased by chitin; when chitin was incorporated at a concentration of 1.5%, the CDDP content of the microspheres was found to be 16.2% (1.8 times that with no addition of chitin). CDDP release was suppressed by chitin and chitosan. The 50% CDDP release time was about 1.5 h when no chitin was added, but about 16 h was required when chitin was incorporated into the microspheres at a concentration of 1.5%. Chitin and chitosan suppressed the decomposition by protease. The microspheres treated with 70% deacetylated chitosan showed the greatest susceptibility to lysozyme. In conclusion, CDDP release can be controlled by the use of chitin or chitosan, and the microspheres should show no immunogenicity in vivo because of their susceptibility to lysozyme.  相似文献   

9.
甲壳素/壳聚糖在环境治理上的应用   总被引:4,自引:0,他引:4  
天然高分子化合物甲壳素、壳聚糖具有原料丰富、无毒、易于生物降解等优点,国内外众多学者对它的开发应用展开研究,本文综述了甲壳素、壳聚糖及其衍生物对环境污染物的去除,介绍了它在环境治理尤其是废水处理中的研究和应用情况。  相似文献   

10.
Chitin was isolated from prawn shell powder through demineralization and deproteinization process. Chitosan was synthesized from isolated chitin by deacetylation process and characterized by Fourier Transform Infrared (FTIR) spectra which showed close agreement with commercial chitosan. Physicochemical features such as moisture content, ash content, degree of deacetylation and molecular weight has been measured. The prepared chitosan was found to have comparatively higher molecular weight than the commercial chitosan. Functionalization of NH2 group of chitosan with C?=?O group of maltol and ethyl maltol by refluxing equimolar quantities of respective ketones was performed. These synthesized derivatives of chitosan were characterized by their FTIR, 13C-Nuclear magnetic resonance (NMR) spectroscopy, elemental analysis, X-Ray Diffraction (XRD), Thermogravimetric analysis (TGA) and Differential thermal analysis (DTA) instrumental techniques. Antibacterial screening results of the synthesized chitosan and its derivatives indicate that these compounds are active against Escherichia coli bacteria.  相似文献   

11.
甲壳素和壳聚糖在伤口敷料中的应用   总被引:15,自引:0,他引:15  
天然高分子甲壳素和壳聚糖以其良好的生物相容性、生物可降解性、无毒、止血、止痛、抗菌、促进伤口愈合并减少疤痕等优点,在伤口敷料方面的研究正在引起人们的重视。本文对甲壳素和壳聚糖适于作为伤口敷料的优异性能从机理上进行了讨论,并介绍了通过甲壳素、壳聚糖及其衍生物制备性能优异的伤口敷料的研究进展。  相似文献   

12.
The contents of the exoskeleton of Parapenaeus longirostris from Moroccan local sources were analyzed and the percentages of inorganic salt, protein, lipid, and chitin were determined. Chitin in the α form was extracted from Parapenaeus longirostris shells by 0.25 M HCl and 1 M NaOH treatment for demineralization and deproteinization, respectively. The obtained chitin was converted into the more useful soluble chitosan. The chemical structure and physico-chemical properties of chitin and chitosan were characterized using Fourier transform-infrared (FT-IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, X-ray diffractometry (XRD), and scanning electron microscopy (SEM). The molecular weight (MW) of chitosan was determined by viscometric methods. The degree of acetylation (DA) of chitin and chitosan was determined by the 1H NMR technique. To the best of our knowledge this is the first report on the extraction and characterization of chitin and chitosan from Parapenaeus longirostris.  相似文献   

13.
Chitin and chitosan are well-thought-out multipurpose biopolymers. Chitosan which is deacetylated chitin is useful than chitin and is biomaterial of great interest. Regardless of its biodegradability, chemical modifications suggest due to the amino side reactivity, helps to impart it other great qualities. Herein, we discuss the preparative methods of synthetically modified derivatives, some are commercially available. This review shields the literature from last few decades.  相似文献   

14.
甲壳素和壳聚糖化学改性研究进展   总被引:20,自引:2,他引:20  
马宁  汪琴  孙胜玲  王爱勤 《化学进展》2004,16(4):643-653
甲壳素是一种天然多糖,脱除乙酰基的产物是壳聚糖,作为新型功能生物材料,它们已在水处理、日用化学品、生物工程和医药等领域得到了应用,但它们不溶于一般的有机溶剂,从而限制了其广泛应用.为此,甲壳素和壳聚糖的化学改性成为该材科研究的重要方向之一.本文综述了近年来甲壳素和壳聚糖化学改性方面的研究进展,着重介绍了选择性化学修饰的方法和发展动向.  相似文献   

15.
几丁质合成酶抑制剂   总被引:2,自引:0,他引:2  
李映  崔紫宁  胡君  凌云  杨新玲 《化学进展》2007,19(4):535-543
几丁质合成酶是生物合成几丁质的关键物质。几丁质是昆虫表皮和真菌细胞壁的特征成分,由于存在的特殊性而成为农药、医药研发的独特靶标。几丁质合成酶抑制剂由于具有安全、高效等特点,成为农用杀虫、杀螨、杀菌剂以及医药抗真菌药物的研发热点。本文综述了天然及人工合成的几丁质合成酶抑制剂的研究进展,并对其发展趋势进行了展望。  相似文献   

16.
甲壳素和壳聚糖在电化学分析中的应用进展   总被引:3,自引:0,他引:3  
甲壳素和壳聚糖特有的吸附、螯合作用的性质使其在电化学分析领域中应用广泛,本文对此进行了综述,着重介绍了甲壳素和壳聚糖修饰电极的制备、特点及其在痕量物质的测定、生物传感器等方面的应用,并对其研究前景进行了展望。  相似文献   

17.
Chitin and chitosan are potentially useful and environmentally friendly biopolymers with a wide range of value-added applications. Effective and green technologies for isolation of these materials are potentially important. Here, we report the use of lactic acid for the demineralization of green crab shells. Green crab shells and lactic acid, produced during cheese making, are two waste streams that could be tapped for large-scale chitin and chitosan processing. We have studied the effect of concentration and temperature on the demineralization of green crab shells. An unusual calcium lactate/lactic acid complex was also isolated and crystallographically characterized. The results have implications not only for the use of weak acids in the isolation of chitin and chitosan but also for the use of lactic acid as a solvent in green chemistry.  相似文献   

18.
Several methods for the rapid determination of the degree of acetylation of chitin and related polymers have been evaluated, including the use of the infrared and the mass spectra. Chitin and chitosan have characteristic degradation temperatures and it is possible to determine the acetylation degree by the use of empirical correlations based on the weight losses associated with the main decomposition peaks.  相似文献   

19.
We isolated α‐chitin, β‐chitin, and γ‐chitin from natural resources by a chemical method to investigate the crystalline structure of chitin. Its characteristics were identified with Fourier transform infrared (FTIR) and solid‐state cross‐polarization/magic‐angle‐spinning (CP–MAS) 13C NMR spectrophotometers. The average molecular weights of α‐chitin, β‐chitin, and γ‐chitin, calculated with the relative viscosity, were about 701, 612, and 524 kDa, respectively. In the FTIR spectra, α‐chitin, β‐chitin, and γ‐chitin showed a doublet, a singlet, and a semidoublet at the amide I band, respectively. The solid‐state CP–MAS 13C NMR spectra revealed that α‐chitin was sharply resolved around 73 and 75 ppm and that β‐chitin had a singlet around 74 ppm. For γ‐chitin, two signals appeared around 73 and 75 ppm. From the X‐ray diffraction results, α‐chitin was observed to have four crystalline reflections at 9.6, 19.6, 21.1, and 23.7 by the crystalline structure. Also, β‐chitin was observed to have two crystalline reflections at 9.1 and 20.3 by the crystalline structure. γ‐Chitin, having an antiparallel and parallel structure, was similar in its X‐ray diffraction patterns to α‐chitin. The exothermic peaks of α‐chitin, β‐chitin, and γ‐chitin appeared at 330, 230, and 310, respectively. The thermal decomposition activation energies of α‐chitin, β‐chitin, and γ‐chitin, calculated by thermogravimetric analysis, were 60.56, 58.16, and 59.26 kJ mol?1, respectively. With the Arrhenius law, ln β was plotted against the reciprocal of the maximum decomposition temperature as a straight line; there was a large slope for large activation energies and a small slope for small activation energies. α‐Chitin with high activation energies was very temperature‐sensitive; β‐Chitin with low activation energies was relatively temperature‐insensitive. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3423–3432, 2004  相似文献   

20.
Chitin and chitosan are attractive biopolymers with enormous structural possibilities for chemical modification, creating platforms for new chemical entities with a broad scope of applications, ranging from material science to medicine. During the last few years, incredible efforts have been dedicated to the regioselective modification of these biopolymers paving the way for improved properties and tailored activities. Herein, the most recent advances in chitin/chitosan regioselective modification, reaction conditions, selectivity, and the impact on its applications are highlighted. Moreover, the recent focus on chitooligosaccharides, their regioselective and chemoselective functionalization, as well as their role in biological studies, including molecular recognition with several biological targets are also covered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号