首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T.C.T. Ting 《Wave Motion》2011,48(4):335-344
In a recent paper Destrade [1] studied surface waves in an exponentially graded orthotropic elastic material. He showed that the quartic equation for the Stroh eigenvalue p is, after properly modified, a quadratic equation in p2 with real coefficients. He also showed that the displacement and the stress decay at different rates with the depth x2 of the half-space. Vinh and Seriani [2] considered the same problem and added the influence of gravity on surface waves. In this paper we generalize the problem to exponentially graded general anisotropic elastic materials. We prove that the coefficients of the sextic equation for p remain real and that the different decay rates for the displacement and the stress hold also for general anisotropic materials. A surface wave exists in the graded material under the influence of gravity if a surface wave can propagate in the homogeneous material without the influence of gravity in which the material parameters are taken at the surface of the graded half-space. As the wave number k → ∞, the surface wave speed approaches the surface wave speed for the homogeneous material. A new matrix differential equation for surface waves in an arbitrarily graded anisotropic elastic material under the influence of gravity is presented. Finally we discuss the existence of one-component surface waves in the exponentially graded anisotropic elastic material with or without the influence of gravity.  相似文献   

2.
A new approach is proposed to investigate the propagation of compressional (P) and shear (SV) waves in metal-matrix composite materials with high volume concentration of particles. The theory of quasicrystalline approximation and Waterman's T matrix formalism are employed to treat the multiple scattering resulting from the particles in composites. The addition theorem for spherical Bessel functions is used to accomplish the translation between different coordinate systems. The analytical expression of the Percus–Yevick correlation function is also given. Closed form solutions for the effective propagation constants and the dynamic effective elastic modulus of materials are obtained in the low frequency limit. At higher frequencies, only numerical results of them are presented. Numerical examples show that the phase velocities of P and SV waves in the composite materials with low volume concentration in the low frequency are in good agreement with the results in previous literatures. The effects of the incident wave number, the volume fraction of particles and the material properties of the particles and matrix on the dynamic effective elastic modulus are also examined.  相似文献   

3.
The Stroh formalism is employed to study Rayleigh and Stoneley waves in exponentially graded elastic materials of general anisotropy under the influence of gravity. The 6×6 fundamental matrix N is no longer real. Nevertheless the coefficients of the sextic equation for the Stroh eigenvalue p are real. The orthogonality and closure relations are derived. Also derived are three Barnett-Lothe tensors. They are not necessarily real. Secular equations for Rayleigh and Stoneley wave speeds are presented. Explicit secular equations are obtained when the materials are orthotropic. In the literature, the secular equations for Stoneley waves in orthotropic materials are obtained without using the Stroh formalism. As a result, it requires computation of a 4×4 determinant. The secular equation presented here requires computation of a 2×2 determinant, and hence is fully explicit. A Rayleigh or Stoneley wave exists in the exponentially graded material under the influence of gravity if the wave can propagate in the homogeneous material without the influence of gravity. As the wave number k????, the Rayleigh or Stoneley wave speed approaches the speed for the homogeneous material.  相似文献   

4.
This article is concerned with overall or macroscopic properties of a composite material with no distinction made between the fibres and the matrix which they are embedded in. All the properties with dimensions larger than the fibre diameter and spacing are regarded as averaged over a volume of material. The systems of particular interest here are in the fibre reinforced composites with the fibres being very much stiffer and stronger than the matrix.Laminated plates of fibre-reinforced material are often fabricated from prepreg tapes, laid up according to some specific arrangement of fibre orientation and then bonded together. An angle-ply laminate is formed by alternating plies so that the families in adjacent laminas are inclined by angle ϕ and −ϕ to given direction alternately. The process of fabricating a multilayered plate of this material gives rise to a laminate in which the plies are separated by resin rich layer, and when this layer is thin enough that its thickness is negligible it may be regarded as plate reinforced by two families of fibres. Problems shall be considered in three dimensions, but attention shall be restricted to linear elasticity theory. The plate under consideration is reinforced by two mechanically equivalent families of fibres, but with no other preferred directions, so that it is locally orthotropic with respect to the plane of the fibres and to the two planes that orthogonally bisect the fibres.In this article linear elastic stress–strain relation is employed to derive dispersion curves for plane harmonic waves propagating in a plate of finite thickness but of infinite lateral extent. Attention is restricted to waves propagating in the plane parallel to stress free plate faces where waves travelling at any angle to one of the families of very strong fibres are examined. The dispersion equations, relating the phase velocity to the wavelength, are obtained. The fundamental modes are examined for symmetric as well as for anti-symmetric deformations. This leads to full understanding of displacement field as well as stress field.  相似文献   

5.
Two-dimensional plane wave propagation in an orthotropic micropolar elastic solid is studied. There exist three types of coupled waves in xy-plane, whose velocities depend upon the angle of propagation and material parameters. A problem on reflection of these plane waves from a stress-free boundary is considered. The reflection coefficients of various reflected waves are computed numerically for a particular model of the solid. The effects of anisotropy upon the velocities and reflection coefficients are depicted graphically for different angles of propagation.  相似文献   

6.
The scattering of elastic waves by a side-drilled hole (sdh) i.e. a circular cylindrical cavity, is considered. The scattering of plane or cylindrical waves by an sdh is an old subject; here the T matrix solution is adopted. The elastic waves are excited by an ultrasonic probe and a model of such a probe is thus used. The waves from the probes are expressed as a Fourier transform, i.e. as a superposition of plane waves. These plane waves are then transformed to the cylindrical system centred at the sdh. To obtain the signal in a receiving ultrasonic probe an electromechanical reciprocity relation is used. The signal response is obtained as a double wavenumber integral and an azimuthal summation. In the far field the integrals can be calculated approximately by the stationary phase approximation. Some numerical examples are given, in particular concentrating on when this approximation is valid.  相似文献   

7.
The Stroh formalism is essentially a spatial Hamiltonian formulation and has been recognized to be a powerful tool for solving elasticity problems involving generally anisotropic elastic materials for which conventional methods developed for isotropic materials become intractable. In this paper we develop the Stroh/Hamiltonian formulation for a generally constrained and prestressed elastic material. We derive the corresponding integral representation for the surface-impedance tensor and explain how it can be used, together with a matrix Riccati equation, to calculate the surface-wave speed. The proposed algorithm can deal with any form of constraint, pre-stress, and direction of wave propagation. As an illustration, previously known results are reproduced for surface waves in a pre-stressed incompressible elastic material and an unstressed inextensible fibre-reinforced composite, and an additional example is included analyzing the effects of pre-stress upon surface waves in an inextensible material.  相似文献   

8.
9.
In this paper, the propagation and localization of Rayleigh waves in disordered piezoelectric phononic crystals with material 6 mm are studied taking the electromechanical coupling into account. The electric field is approximated as quasi-static. The analytical solutions of Rayleigh waves are obtained. The 6×6 transfer matrix between two consecutive unit cells is obtained by means of the mechanical and electrical continuity conditions. The expression of the localization factor in disordered periodic structures is presented by regarding the variables of the mechanical and electrical fields as the elements of the state vector. The numerical results for a piezoelectric phononic crystal—PVDF-PZT-2 piezocomposite—are presented and analyzed. From the results we can see that the localization is strengthened with the increase of the disorder degree. The characteristics of the passbands and stopbands are influenced by different ratios of the thickness of the polymers to that of the piezoelectric ceramics. Disorder in elastic constant c11 of PZT-2 can also result in the localization phenomenon. The propagation and localization of Rayleigh waves in piezoelectric phononic crystals may be controlled by properly designing some structural parameters.  相似文献   

10.
The propagation of oscillatory waves through periodic elastic composites has been analysed on the basis of the Floquet theory. This leads to self-adjoint differential equation systems which it was proved convenient to solve by variational methods. Many composites, such as the light-weight high-strength boron-epoxy material, consist of strong reinforcing components in a plastic matrix. The latter can exhibit viscoelastic properties which can have a significant influence on wave propagation characteristics. Replacement of the elastic constant by the viscoelastic complex modulus changes the mathematical structure so that the differential equation system is no longer self-adjoint. However, a modification of the variational principles is suggested which retains formal self-adjointness, and yields variational principles which contain additional boundary terms. These are applied to the determination of wave speeds and mode shapes for a laminated composite made of homogeneous elastic reinforcing plates in a homogeneous viscoelastic matrix for plane waves propagating normally to the reinforcing plates. These results agree well with the exact solution which can be evaluated in this simple case. The variational principles permit solutions for periodic, but otherwise arbitrary variation of material properties.  相似文献   

11.
The dispersive behaviour of time-harmonic waves propagating along a principal direction in a perfectly bonded pre-stressed compressible elastic bi-material laminate is considered. The dispersion relation which relates wave speed and wavenumber is obtained by formulating the incremental boundary value problem and the use of the propagator matrix technique. At the low wavenumber limit, depending on the pre-stress, both the fundamental mode and the next lowest mode may have finite phase speeds. For the higher modes which have infinite phase speeds in the low wavenumber region, an expression to determine the cut-off frequencies is obtained. At the high wavenumber limit, the phase speeds of the fundamental mode and higher modes tend to phase speeds of the surface wave, the interfacial wave or the limiting phase speed of the composite. For numerical examples, either a two-parameter compressible neo-Hookean material or a two-parameter compressible Varga material is assumed.  相似文献   

12.
《Comptes Rendus Mecanique》2017,345(11):797-804
For the first time, practical applications as an alarm device and automatic filling of an aquarium using an electromechanical switch manufactured from metallic glass (MG) ribbon is proposed. The elastic response of an initial arc-shaped MG ribbon-based Fe90.65B3.9Cr2.75Si2.7 is studied and exploited. Under the applied load F, the amorphous material exhibits a reversible elastic wavy response. During the elastic deformation and multiplication of harmonic undulations, a perfect linear contact between the waves and support is established. This contact position is the same for the pair waves, and can be employed to ensure the passage of an electric current, since the ribbon is Fe-based. The reversible elastic wavy response of MG ribbon can be used as an electromechanical switch. The lifespan of the ribbon used as a switch is also considered.  相似文献   

13.
In this paper, the well-established two-dimensional mathematical model for linear pyroelectric materials is employed to investigate the reflection of waves at the boundary between a vacuum and an elastic, transversely isotropic, pyroelectric material. A comparative study between the solutions of (a) classical thermoelasticity, (b) Cattaneo–Lord–Shulman theory and (c) Green–Lindsay theory equations, characterised by none, one and two relaxation times, respectively, is presented. Suitable boundary conditions are considered in order to determine the reflection coefficients when incident elasto–electro–thermal waves impinge the free interface. It is established that, in the quasi-electrostatic approximation, three different classes of waves: (1) two principally elastic waves, namely a quasi-longitudinal Primary (qP) wave and a quasi-transverse Secondary (qS) wave; and (2) a mainly thermal (qT) wave. The observed electrical effects are, on the other hand, a direct consequence of mechanical and thermal phenomena due to pyroelectric coupling. The computed reflection coefficients of plane qP waves are found to depend upon the angle of incidence, the elastic, electric and thermal parameters of the medium, as well as the thermal relaxation times. The special cases of normal and grazing incidence are also derived and discussed. Finally, the reflection coefficients are computed for cadmium selenide observing the influence of (1) the anisotropy of the material, (2) the electrical potential and (3) temperature variations and (4) the thermal relaxation times on the reflection coefficients.  相似文献   

14.
The present paper studies the propagation of plane time harmonic waves in an infinite space filled by a thermoelastic material with microtemperatures. It is found that there are seven basic waves traveling with distinct speeds: (a) two transverse elastic waves uncoupled, undamped in time and traveling independently with the speed that is unaffected by the thermal effects; (b) two transverse thermal standing waves decaying exponentially to zero when time tends to infinity and they are unaffected by the elastic deformations; (c) three dilatational waves that are coupled due to the presence of thermal properties of the material. The set of dilatational waves consists of a quasi-elastic longitudinal wave and two quasi-thermal standing waves. The two transverse elastic waves are not subjected to the dispersion, while the other two transverse thermal standing waves and the dilatational waves present the dispersive character. Explicit expressions for all these seven waves are presented. The Rayleigh surface wave propagation problem is addressed and the secular equation is obtained in an explicit form. Numerical computations are performed for a specific model, and the results obtained are depicted graphically.  相似文献   

15.
This paper studies the wave attenuation performance of dissipative solid acoustic metamaterials (AMMs) with local resonators possessing subwavelength band gaps. The metamaterial is composed of dense rubber-coated inclusions of a circular shape embedded periodically in a matrix medium. Visco-elastic material losses present in a matrix and/or resonator coating are introduced by either the Kelvin–Voigt or generalized Maxwell models. Numerical solutions are obtained in the frequency domain by means of k(ω)-approach combined with the finite element method. Spatially attenuating waves are described by real frequencies ω and complex-valued wave vectors k. Complete 3D band structure diagrams including complex-valued pass bands are evaluated for the undamped linear elastic and several visco-elastic AMM cases. The changes in the band diagrams due to the visco-elasticity are discussed in detail; the comparison between the two visco-elastic models representing artificial (Kelvin–Voigt model) and experimentally characterized (generalized Maxwell model) damping is performed. The interpretation of the results is facilitated by using attenuation and transmission spectra. Two mechanisms of the energy absorption, i.e. due to the resonance of the inclusions and dissipative effects in the materials, are discussed separately.It is found that the visco-elastic damping of the matrix material decreases the attenuation performance of AMMs within band gaps; however, if the matrix material is slightly damped, it can be modeled as linear elastic without the loss of accuracy given the resonator coating is dissipative. This study also demonstrates that visco-elastic losses properly introduced in the resonator coating improve the attenuation bandwidth of AMMs although the attenuation on the resonance peaks is reduced.  相似文献   

16.
We show that finite amplitude shearing motions superimposed on an unsteady simple extension are admissible in any incompressible isotropic elastic material. We show that the determining equations for these shearing motions admit a general reduction to a system of ordinary differential equations (ODEs) in the remarkable case of generalized circularly polarized transverse waves. When these waves are standing and the underlying unsteady simple extension is composed of a harmonic perturbation of a static stretch it is possible to reduce the determining ODEs to linear or non-linear Mathieu equations. We use this property for a detailed study of the phenomenon of parametric resonance in non-linear elastodynamics.  相似文献   

17.
The features of blast and impact that can damage a delicate target supported by a structure include both the peak pressure and the impulse delivered to the structure. This study examines how layers of elastic and visco-elastic materials may be assembled to mitigate these features. The impedance mismatch between two elastic layers is known to reduce the pressure, but dissipation is required to mitigate the transmitted impulse in light-weight armor. A novel design concept called impact or blast tuning is introduced in which a multi-layered armor is used to tune the stress waves resulting from an impact or blast to specific frequencies that match the damping frequencies of visco-elastic layers. The material and geometrical parameters controlling the viscous dissipation of the energy within the armor are identified for a simplified one-dimensional system, to provide insight into how the optimal design of multi-use armor might be based on this concept.  相似文献   

18.
The dispersive behavior of small amplitude waves propagating along a non-principal direction in a pre-stressed, compressible elastic layer is considered. One of the principal axes of stretch is normal to the elastic layer and the direction of propagation makes an angle θ with one of the in-plane principal axes. The dispersion relations which relate wave speed and wavenumber are obtained for both symmetric and anti-symmetric motions by formulating the incremental boundary value problem for a general strain energy function. The behavior of the dispersion curves for symmetric waves is for the most part similar to that of the anti-symmetric waves at the low and high wavenumber limits. At the low wavenumber limit, depending on the pre-stress and propagation angle, it may be possible for both the fundamental mode and the next lowest mode to have finite phase speeds, while other higher modes have an infinite phase speed. At the high wavenumber limit, the phase speeds of the fundamental mode and the higher modes tend to the Rayleigh surface wave speed and the limiting wave speeds of the layer, respectively. Numerical results are presented for a Blatz–Ko material and the effect of the propagation angle is clearly illustrated.  相似文献   

19.
Starting from a Cauchy elastic composite with a dilute suspension of randomly distributed inclusions and characterized at first-order by a certain discrepancy tensor (see part I of the present article), it is shown that the equivalent second-gradient Mindlin elastic solid: (i) is positive definite only when the discrepancy tensor is negative defined; (ii) the non-local material symmetries are the same of the discrepancy tensor, and (iii) the non-local effective behaviour is affected by the shape of the RVE, which does not influence the first-order homogenized response. Furthermore, explicit derivations of non-local parameters from heterogeneous Cauchy elastic composites are obtained in the particular cases of: (a) circular cylindrical and spherical isotropic inclusions embedded in an isotropic matrix, (b) n-polygonal cylindrical voids in an isotropic matrix, and (c) circular cylindrical voids in an orthotropic matrix.  相似文献   

20.
The paper presents theoretical results on the interaction of cubically nonlinear harmonic elastic plane waves in a nonlinear material described by the Murnaghan potential. The interaction of two harmonic transverse waves is studied using the method of slowly varying amplitude. Reduced and evolution equations and the Manley-Rowe relations are derived. An analysis is made of the mechanism of energy transfer from the strong pumping wave, which has frequency ω, to the weak signal wave, which has frequency 3ω because of this interaction. A switching mechanism for hypersonic waves in a nonlinear elastic material is described, which is similar to the switching mechanism observed in transistors __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 6, pp. 61–70, June 2006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号