首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The ligands (ScSp)-1-diphenylphosphino-2,1′-(1-dicyclohexylphosphinopropanediyl)ferrocene, (ScSp)-PPCyPF, and (ScSp)-1-diphenylphosphino-2,1′-(1-diphenylphosphinopropanediyl)ferrocene, (ScSp)-PPPhPF, have been used in the synthesis of the new Pd(0) and Pd(II) derivatives [Pd(PPCyPF)(DMFU)] (1) (DMFU = dimethylfumarate), [Pd(PPCyPF)(MA)] (2) (MA = maleic anhydride), [Pd(η3-2-Me-C3H4)(PP)]OTf (PP = PPCyPF, 3; PPPhPF, 4) (OTf = triflate), [PdRR′(PP)] (R = Me, R′ = Cl, PP = PPCyPF, 5, PPPhPF, 6; R = R′ = Me, PP = PPCyPF, 7, PPPhPF, 8; R = R′ = C6F5, PP = PPCyPF, 9, PPPhPF, 10). The molecular structure of 7 has been determined by X-ray diffraction. In the cases of complexes 1-4 two isomers are formed depending on the orientation of the ancillary ligand with respect to the ferrocenyl core. The stereochemistry of these complexes has been determined. In complex 6 the two possible isomers are obtained whereas in complex 5 the derivative with the Me group trans to PPh2 is selectively formed. Restricted rotation of the pentafluorophenyl groups with respect to the Pd-C bond has been found in 9 and 10. In all derivatives the conformation of the ferrocenyl ligand is the same as that seen by X-ray diffraction and deduced from NMR data.  相似文献   

2.
Four palladium(II) complexes with R2edda ligands, dichlorido(O,O′-dialkylethylenediamine-N,N′-diacetate)palladium(II) monohydrates, [PdCl2(R2edda)]?H2O, R = Me, Et, n-Pr, i-Bu, and the new ligand precursor i-Bu2edda?2HCl?H2O, O,O′-diisobutylethylenediamine-N,N′-diacetate dihydrochloride monohydrate, were synthesized and characterized by IR, 1H and 13C NMR spectroscopy, and elemental analysis. DFT calculations were performed for the palladium(II) complexes and a high possibility for isomer formation due to stereogenic N ligand atoms was confirmed. Moreover, DFT simulations revealed energetic profile of isomer formation. Computational outcomes are in agreement with spectroscopic instrumental findings, both strongly indicating a non-stereoselective reaction between selected esters and K2[PdCl4], forming isomers.  相似文献   

3.
A study of the reactivity of enantiopure ferrocenylimine (SC)-[FcCHN-CH(Me)(Ph)] {Fc =  (η5-C5H5)Fe{(η5-C5H4)-} (1a) with palladium(II)-allyl complexes [Pd(η3-1R1,3R2-C3H3)(μ-Cl)]2 {R1 = H and R2 = H (2), Ph (3) or R1 = R2 = Ph (4)} is reported. Treatment of 1a with 2 or 3 {in a molar ratio Pd(II):1a = 1} in CH2Cl2 at 298 K produced [Pd(η3-3R2-C3H4){FcCHN-CH(Me)(Ph)}Cl] {R2 = H (5a) or Ph (6a)}. When the reaction was carried out under identical experimental conditions using complex 4 as starting material no evidence for the formation of [Pd(η3-1,3-Ph2-C3H3){FcCHN-CH(Me)(Ph)}Cl] (7a) was found. Additional studies on the reactivity of (SC)-[FcCHN-CH(R3)(CH2OH)] {R3 = Me (1b) or CHMe2 (1c)} with complex 4 showed the importance of the bulk of the substituents on the palladium(II) allyl-complex (2-4) or on the ferrocenylimines (1) in this type of reaction. The crystal structure of 5a showed that: (a) the ferrocenylimine adopts an anti-(E) conformation and behaves as an N-donor ligand, (b) the chloride is in acis-arrangement to the nitrogen and (c) the allyl group binds to the palladium(II) in a η3-fashion. Solution NMR studies of 5a and 6a and [Pd(η3-1,3-Ph2-C3H3){FcCHN-CH(Me)(CH2OH)}Cl] (7b) revealed the coexistence of several isomers in solution. The stoichiometric reaction between 6a and sodium diethyl 2-methylmalonate reveals that the formation of the achiral linear trans-(E) isomer of Ph-CHCH-CH2Nu (8) was preferred over the branched derivative (9). A comparative study of the potential utility of ligand 1a, complex 5a and the amine (SC)-H2N-CH(Me)(Ph) (11) as catalysts in the allylic alkylation of (E)-3-phenyl-2-propenyl (cinnamyl) acetate with the nucleophile diethyl 2-methylmalonate (Nu) is reported.  相似文献   

4.
The complete structural analysis of the palladium complexes of the triolefinic macrocycles (E,E,E)-1,6,11-tris(arylsulfonyl)-1,6,11-triazacyclopentadeca-3,8,13-trienes, which featured from three identical to three different aryl groups, was achieved by performing X-ray diffraction studies, NMR spectroscopy, and other calculations. The stereochemical complexity is determined by the different isomers formed through complexation of the metal to one or other face of each of the three olefins involved. The palladacyclopropane formulation of the palladium-olefin interaction offers a clear picture of the stereogenicity of the olefin carbon atoms that are complexed to the metal. The energetically favorable isomers were identified in the solid-state and in solution by performing X-ray diffraction and NMR spectroscopic analysis, respectively.  相似文献   

5.
6.
The preparation of the new ligand 8-(di-tert-butylphosphinooxy)quinoline (1) and the palladium derivatives [PdCl2(1)] (2), [Pd(η3-all)(1)]+ [all = C3H5 (3a), 1-PhC3H4 (3b) and 1,3-Ph2C3H3 (3c)] and [Pd(η2-ol)(1)] [ol = dimethyl fumarate (4a) and fumaronitrile (4b)] is reported. The cationic species 3a-3c have been isolated as salts. The complex 3a(BF4) is obtained either from the reaction of 1 with [Pd(μ-Cl)(η3-C3H5)]2 or from the reaction of ClP(CMe3)2 with [Pd(η3-C3H5)(8-oxyquinoline)], followed in both cases by chloride abstraction with NaBF4. In the complexes, the ligand 1 is P,N chelated to the central metal, as shown by the X-ray structural analysis of 3a(BF4). At 25 °C in solution, 3a(BF4) and 3b(BF4) undergo a fast η3−η1−η3 dynamic process which brings about a syn-anti exchange only for the allylic protons cis to phosphorus, while for 4a and 4b a slow rotation of the olefin around its bond axis to palladium takes place. The complexes 2 and 3a(BF4) are efficient catalyst precursors in the coupling of the phenylboronic acid with aryl bromides and chlorides.  相似文献   

7.
Reaction of bis(amide) sodium Na2[(1R,2R)-(−)-1,2-(NSiMe3)2-C6H10] (Na2[L1]) with Ti(OiPr)2Cl2 in different conditions gave mixed-ligand complexes [Ti(OiPr)Cl][L1] (1) or [Ti(OiPr)2Cl]2[L1] (2); 2 is a dinuclear titanium example in which Ti atoms are bridged by nitrogen and oxygen atoms simultaneously forming a distorted rhombic core. Reaction of the amine-amidinate ligand (1R,2R)-(−)-1-Li[NC(Ph)N(SiMe3)]-2-(NHSiMe3)-C6H10(Li[L2]) or rarely linked bis(amidinate) ligand Li2[(1R,2R)-(−)-1,2-{NC(Ph)N(SiMe3)}2-C6H10](Li2[L3]) with ZrCl4 yielded the unbridged and bridged bis(amidinate) complexes ZrCl2[L2]2 (3) and [ZrCl2(THF)][L3] (4), respectively; Moreover, the reaction of (1R,2R)-(−)-1-Li[NC(Ph)N(SiMe3)]-2-Li(NSiMe3)C6H10(Li2[L2]) with Ti(OiPr)2Cl2 gave a new type of tridentate amido-amidinate product [Ti(OiPr)2][L2] (6), which is a distinct model compared to [Ti(OiPr)2Cl][L2] (5) yielded from Li[L2]. All the products have been characterized by X-ray crystallography and the structural studies are presented detailedly comparing with relevant compounds.  相似文献   

8.
The synthesis of two novel cyclisation substrates for the asymmetric intramolecular Heck reaction is reported. Their cyclisation, in addition to a known substrate for cis-decalin formation, were tested with palladium complexes of BINAP and heterobidentate oxazoline-containing ligands. In general BINAP provides a more active catalyst system for the range of substrates tested although excellent enantioselectivities of up to 85% were obtained with the P,N ligands studied. A trend was noted whereby the t-leucine-derived oxazoline ligands were more reactive and enantioselective than the valine-derived analogues. Similarly, the diphenylphosphinoferrocenyloxazoline ligands were more reactive and selective than the corresponding diphenylphosphinophenyloxazoline ligands.  相似文献   

9.
Tetrahedral dibromomanganese(II) complexes having formulas [MnBr2{O?=?PR(NMe2)2}2] (R?=?NMe2 (1); Ph (2)) were isolated and characterized by single crystal X-ray diffraction. [MnBr2{O?=?P(NMe2)3}2] (1) crystallizes in the monoclinic C2/c space group. The asymmetric unit contains one half of the molecule with the Mn(II) atom in a distorted tetrahedral coordination. The intermolecular network of this coordination compound was studied by generating and inspecting its Hirshfeld surface, while the weak intramolecular hydrogen bonds were investigated computationally by AIM analysis in the gas phase and in solution. The Hirshfeld analysis was extended to the related [MnBr2{O?=?PPh(NMe2)2}2] complex (2).  相似文献   

10.
Varieties of chiral, bridged bisimidazolium salts as well as the synthesis of palladium complexes of general formula with the corresponding chelating N-heterocyclic carbene ligands is reported. This is the first systematic study of chiral bis(imidazolin-2-ylidene)palladium(II) complexes bearing chiral groups on the endocyclic nitrogens. Structural proof of such a chiral palladium(II) complex is presented by way of an X-ray diffraction study of complex 3a.  相似文献   

11.
Treatment of [(1,5-C8H12)PtCl(X)] (X=Cl, CH3, CH2CMe3) with C2 chiral cyclopentane-1,2-diyl-bis(phosphanes) C5H8(PR2)2, either as racemic mixtures or as resolved enantiomers, afforded the chelate complexes [C5H8(PR2)2Pt(Cl)(X)] (X=Cl: R=Ph (1), N-pip (2), OPh (3); X=CH3: R=Ph (4), N-pip (5), OPh (6); X=CH2CMe3: R=Ph (7), N-pip (8), OPh (9); ‘N-pip’=N(CH2)5), (+)-[(1R,2R)-C5H8{P(OPh)2}2PtCl2] [(R,R)-3], (−)-[(1S,2S)-C5H8{P(OPh)2}2PtCl2] [(S,S)-3], (−)-[(1R,2R)-C5H8(PPh2)2Pt(Cl)(X)], and (+)-[(1S,2S)-C5H8(PPh2)2Pt(Cl)(X)] (X=CH3: (R,R)-4, (S,S)-4; X=CH2CMe3: (R,R)-7, (S,S)-7). Reacting 4, 6, and 7 with AgO3SCF3 led to triflate derivatives [C5H8(PR2)2Pt(X)(OSO2CF3)] [X=CH3: R=Ph (11), OPh (12); X=CH2CMe3: R=Ph (13)] with covalently bonded OSO2CF3 ligands. The unusual Pt2 complex [μ-Cl{C5H8(PPh2)2PtCH3}2]O3SCF3 (14) containing an unsupported single Pt---Cl---Pt bridge was also isolated. In the presence of SnCl2, complexes 1, 3, 4, 6, 7, and 9 are catalysts for the hydroformylation of styrene forming 2- and 3-phenylpropanal together with ethylbenzene. Except for 1, they also catalyze the consecutive hydrogenation of the primary propanals to alcohols. High regioselectivities towards 2-phenylpropanal (branched-to-normal ratios ≥91:9) were obtained in hydroformylations catalyzed by 3 and 4, for which the influence of varied CO/H2 partial pressures, catalyst-to-substrate ratios and different reaction temperatures and times on the outcome of the catalytic reaction was also studied. When tin-modified complexes (R,R)-3, (S,S)-3, and (S,S)-4 were used as optically active Pt(II) catalysts, an only low stereoselectivity for asymmetric hydroformylation (e.e.<18%) was observed. The Pt---Sn complexes [C5H8(PR2)2Pt(CH3)(SnCl3)] [R=Ph (15), OPh (17)], resulting from SnCl2 insertion into the Pt---Cl bonds of 4 or 6, undergo rapid degradation in solution, forming mixtures composed of [C5H8(PR2)2Pt(X)(Y)] with R=Ph or OPh and X/Y=Cl/SnCl3 (16, 18), Cl/Cl (1, 3), and SnCl3/SnCl3 (19, 20), respectively. In the presence of SnCl2, triflate complex 11 also becomes a catalyst for styrene hydroformylation and consecutive hydrogenation of the aldehydes to alcohols. The crystal structures of 11 complexes — 2, 5, 7, 8, 9, 10 (the previously prepared [C5H8{P(N-pip)2}2Pt(CH2CMe3)2]), 13, 14, 16, (R,R)-3, and (S,S)-3 — were determined by X-ray diffraction.  相似文献   

12.
The neutral pentacoordinate silicon(IV) complexes 8 and 9 with an SiO2N3 skeleton and the neutral hexacoordinate silicon(IV) complex 10.1/2 CH3CN with an SiO4N2 skeleton were synthesized, starting from tetra(cyanato-N)silane or tetra(thiocyanato-N)silane. Compounds 8 and 9 contain one tridentate dianionic ligand derived from 4-[(2-hydroxyphenyl)amino]pent-3-en-2-one and two monodentate singly charged cyanato-N or thiocyanato-N ligands bound to the silicon(IV) coordination center, whereas the silicon(IV) center of 10 is coordinated by two of these tridentate dianionic ligands. All compounds were characterized by single-crystal X-ray diffraction and solid-state and solution NMR spectroscopy. To get more information about the stereochemistry of the compounds studied, the experimental investigations were complemented by computational studies.  相似文献   

13.
The synthesis of diphenylarylphosphane and 1,2-bis(diarylphosphanyl)ethane ligands, where the aryl group is -C6H4CH2CH2SiMe2CH2OC6H4-3-NMe2, their palladium(II) complexes, and their corresponding ammonium-quaternized derivatives is described. These new phosphanes were devised as models of potentially water-soluble dendritic carbosilane ligands, although the solubility brought about by the quaternized N-trimethylanilinium groups is scarce. The palladium(II) complexes have been fully characterized by 1H, 13C, and 31P NMR spectroscopy and mass spectrometry, and have been tested in the Hiyama cross-coupling reaction between tri(methoxy)phenylsilane and 3-bromopyridine in aqueous sodium hydroxide solution.  相似文献   

14.
Addition of trans-N,N'-dimethyl-1,2-diaminocyclohexane to a palladium bis(arylisocyanide) complex leads to the one-step formation of the first chiral bis(acyclic diaminocarbene) complex, which is thermally stable under N(2) but undergoes slow oxidation to a bis(amidine) complex under air.  相似文献   

15.
Selective and efficient preparation of a new chiral dipalladium(0) complex with an olefinic macrocyclic ligand named (E,E,E,E,E,E)-1,6,11,16,21,26-hexakis[(4-methylphenyl)sulfonyl]-1,6,11,16,21,26-hexaazacyclotriaconta-3,8,13,18,23,28-hexaenedipalladium(0) (5) is reported. Dinuclear palladium(0) complex 5 has been fully characterized by means of NMR spectroscopy and X-ray diffraction analysis.  相似文献   

16.
A synthetic route to tetradentate chiral N(4) ligands has been developed with the aim to study the potential of corresponding iron and manganese complexes as catalysts for enantioselective epoxidation. These ligands, which contain two oxazoline rings and two trialkylamino groups as coordinating units, are readily prepared in enantiomerically pure form by the reaction of chiral 2-chloromethyloxazolines with achiral N,N'-dimethylethane-1,2-diamine or chiral (R,R)-N,N'-dimethylcyclohexane-1,2-diamine. The ligands derived from N,N'-dimethylethane-1,2-diamine reacted with anhydrous metal halides MnCl(2) and FeCl(2) in a stereoselective manner to give octahedral mononuclear complexes that have the general formula Delta-[(L)MCl(2)]. In contrast, the ligands derived from N,N'-dimethylcyclohexane-1,2-diamine formed complexes with different coordination modes depending on the diastereomer employed: in one case the metal ion was found to be pentacoordinate, in the other case a hexacoordinated complex was observed. The structure of a series of Fe and Mn complexes was determined by X-ray analysis. The coordination chemistry of these ligands was further studied by X-ray and NMR analyses of the diamagnetic isostructural complexes [(L)ZnCl(2)]. Analogous ionic complexes, which were prepared by removing chloride with silver trifluoromethanesulfonate or hexafluoroantimonate, were tested as catalysts for the epoxidation of olefins.  相似文献   

17.
The metallation of two homologous, unsymmetrical BAI (1,3-bis(aryliminio)isoindoline) ligands with palladium acetate leads to square–planar cyclometallated PdII complexes, comprising a C–H bond activated dianionic and tetradentate BAI ligand. In the solid state these isostructural monomeric complexes form a structural motif containing large voids, despite the absence of other than dispersive intermolecular interactions.  相似文献   

18.
The binding of heterobidentate PS ligands introduces metal-centered chirality to the planar chiral parent complex Ru(η61-NMe2C6H4C6H4PCy2)Cl2. Observed diastereomeric ratios for the kinetic product vary dramatically depending upon ring size of the chelate formed with the PS ligand. The complexes epimerize very slowly to thermodynamic product ratios that are substantially different from the kinetic product ratios.  相似文献   

19.
Coordination chemistry of a pyridine imidazole-2-ylidene ligand (pyN ˆC) with sterically hindered substituents toward palladium(II) metal ions has been investigated. The palladium carbene complex [(C-pyN ˆC)Pd(η3-allyl)Cl] (3) is prepared via the transmetallation from the corresponding silver carbene complexes with [ClPd(η3-allyl)]2. Upon the abstraction of chloride, coordination of pyridinyl-nitrogen becomes feasible to form [C,N-(pyN ˆC)Pd(η3-allyl)](BF4) (4). Ligand substitution reaction of 4 with triphenylphosphine results in the formation of [(C-pyN ˆC)Pd(PPh3)(η3-allyl)](BF4)], which the pyridinyl-nitrogen donor is substituted by the phosphine. This palladium complex appears to be base sensitive. Treatment of 4 with t-butoxide causes the decomposition to yield the metal nano-particles. Furthermore, de-complexation of 4 takes place under hydrogen atmosphere to generate the carbene precursor, 1-(6-mesityl-2-picolyl)-3-mesitylimidazolium salt. Nevertheless, the palladium complex 4 shows good catalytic activity on the Suzuki-Miyaura and Mizoroki-Heck reactions.  相似文献   

20.
NPN ligands based on the bis(oxazoline) skeleton can be prepared by a divergent method, which allows a high modularity both in the type of phosphorous group (phosphinite, phosphate, phosphane) and the substitution in the methylene bridge. The Pd complexes of these ligands can efficiently promote the allylic substitution both in molecular solvents and ionic liquids, with important effect of the nature of ligand, which also controls the partial recovery of the Pd catalyst in ionic liquid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号