共查询到19条相似文献,搜索用时 62 毫秒
1.
Hydrogels, three-dimensional hydrophilic polymer networks, are appealing candidate materials for study- ing the cellular microenvironment as their substantial water content helps to better mimic soft tissue. However, hydrogels can lack mechanical stiffness, strength, and tough- ness. Composite hydrogel systems have been shown to improve upon mechanical properties compared to their single- component counterparts. Poly (ethylene glycol) dimethacrylate (PEGDMA) and alginate are polymers that have been used to form hydrogels for biological applications. Single- component and composite PEGDMA and alginate systems were fabricated with a range of total polymer concentrations. Bulk gels were mechanically characterized using spherical indentation testing and a viscoelastic analysis framework. An increase in shear modulus with increasing polymer con- centration was demonstrated for all systems. Alginate hydro- gels were shown to have a smaller viscoelastic ratio than the PEGDMA gels, indicating more extensive relaxation over time. Composite alginate and PEGDMA hydrogels exhib- ited a combination of the mechanical properties of the con- stituents, as well as a qualitative increase in toughness. Additionally, multiple hydrogel systems were produced that had similar shear moduli, but different viscoelastic behaviors. Accurate measurement of the mechanical properties of hydrogels is necessary in order to determine what parameters are key in modeling the cellular microenvironment. 相似文献
2.
In microcantilever-based label-free biodetection technologies, deflection changes induced by adsorptions of double-stranded DNA (dsDNA) molecules on Au-layer surface are greatly affected by the mechanical, thermal and electrical properties of DNA biofilm. In this paper, the elastic properties of dsDNA biofilm are studied. First, the Parsegian's empirical potential based on a mesoscopic liq- uid crystal theory is employed to describe the interaction energy among coarse-grained DNA cylinders. Then, con- sidering a Gaussian distribution of DNA interaxial distance, the thought experiment method is used to derive an analyti- cal expression for Young's modulus of DNA biofilm with a stochastic packing pattern for the first time. Results show that Young's modulus of DNA biofilm is on the order of 10 MPa. These findings could provide a simple and effective method to evaluate the mechanical properties of soft biofilm on snbstrate. 相似文献
3.
In the micro-molding of component with a micro-sized channel, the ability for polymer melt to flowing into the micro-channel in a macro-sized part is a big challenge. The multidimensional flow behaviors are included in the injection molding the macro-component with a micro-channel. In this case, a simplified model is used to analyze the flow behaviors of the macro-sized part within a micro-channel. The flow behaviors in the macro-cavity are estimated by using the finite element and finite difference methods. The influence of the injection rate, micro-channel size, heat transfer coefficient, and mold temperature on the flowing distance is investigated based on the non-isothermal analytic method. The results show that an increase in the radius of the micro-channel and mold temperature can improve effectively the flowing distance in the micro-channel. 相似文献
4.
Dynamics and adaptive control of a dual-arm space robot with closed-loop constraints and uncertain inertial parameters简 总被引:5,自引:1,他引:5
A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of controlling the po- sition and attitude of both the satellite base and the payload grasped by the manipulator end effectors. The equations of motion in reduced-order form for the constrained system are derived by incorporating the constraint equations in terms of accelerations into Kane's equations of the unconstrained system. Model analysis shows that the resulting equations perfectly meet the requirement of adaptive controller design. Consequently, by using an indirect approach, an adaptive control scheme is proposed to accomplish position/attitude trajectory tracking control with the uncertain parameters be- ing estimated on-line. The actuator redundancy due to the closed-loop constraints is utilized to minimize a weighted norm of the joint torques. Global asymptotic stability is proven by using Lyapunov's method, and simulation results are also presented to demonstrate the effectiveness of the proposed approach. 相似文献
5.
Condensation technique of degree of freedom is first proposed to improve the computational efficiency of meshfree method with Galerkin weak form for elastic dy- namic analysis. In the present method, scattered nodes with- out connectivity are divided into several subsets by cells with arbitrary shape. Local discrete equation is established over each cell by using moving Kriging interpolation, in which the nodes that located in the cell are used for approxima- tion. Then local discrete equations can be simplified by con- densation of degree of freedom, which transfers equations of inner nodes to equations of boundary nodes based on cells. The global dynamic system equations are obtained by as- sembling all local discrete equations and are solved by using the standard implicit Newmark's time integration scheme. In the scheme of present method, the calculation of each cell is carried out by meshfree method, and local search is imple- mented in interpolation. Numerical examples show that the present method has high computational efficiency and good accuracy in solving elastic dynamic problems. 相似文献
6.
It has shown that altering crosslink density of biopolymers will regulate the morphology of Mesenchymal Stem Cells (MSCs) and the subsequent MSCs differentia- tion. These observations have been found in a wide range of biopolymers. However, a recent work published in Nature Materials has revealed that MSCs morphology and differen- tiation was unaffected by crosslink density of polydimethyl- siloxane (PDMS), which remains elusive. To understand such unusual behaviour, we use nanoindentation tests and modelling to characterize viscoelastic properties and sur- face adhesion of PDMS with different base:crosslink ratio varied from 50:1 (50D) to 10:1 (10D). It has shown that lower crosslink density leads to lower elastic moduli. De- spite lower nanoindentation elastic moduli, PDMS with lowest crosslink density has higher local surface adhesion which would affect cell-biomaterials interactions. This work suggests that surface adhesion is likely another important physical cue to regulate cell-biomaterials interactions. 相似文献
7.
In this work, an enhanced treatment of the solid boundaries is proposed for smoothed particle hydrodynamics with implicit time integration scheme (Implicit SPH). Three types of virtual particles, i.e., boundary particles, image particles and mirror particles, are used to impose boundary conditions. Boundary particles are fixed on the solid boundary, and each boundary particle is associated with two fixed image particles inside the fluid domain and two fixed mirror particles outside the fluid domain. The image particles take the flow properties through fluid particles with moving least squares (MLS) interpolation and the properties of mirror particles can be obtained by the corresponding image particles. A repulsive force is also applied for boundary particles to prevent fluid particles from unphysical penetra- tion through solid boundaries. The new boundary treatment method has been validated with five numerical examples. All the numerical results show that Implicit SPH with this new boundary-treatment method can obtain accurate results for non-Newtonian fluids as well as Newtonian fluids, and this method is suitable for complex solid boundaries and can be easily extended to 3D problems. 相似文献
8.
The present study focuses on the analysis of free vibrations of axisymmetric functionally graded hollow spheres. The material is assumed to be graded in radial di- rection with a simple power law. Matrix Frrbenious method of extended power series is employed to derive the analytical solutions for displacement, temperature, and stresses. The dispersion relations for the existence of various types of pos- sible modes of vibrations in the considered hollow sphere are derived in a compact form. In order to explore the character- istics of vibrations, the secular equations are further solved by using fixed point iteration numerical technique with the help of MATLAB software. The numerical results have been presented graphically for polymethyl methecrylate materials in respect of natural frequencies, frequency shift, inverse quality factor, displacement, temperature change, and radial stress. 相似文献
9.
The bending behavior of the circular cross-section timber beam strengthened with a fiber reinforced polymer (FRP) sheet is investigated. The tight bonding is on the interface between the surface of a timber beam and the reinforcement layer of the FRP sheet. An analytical expression for the bending moment-curvature relation is presented, and its failure modes are analyzed. The governing equation for nonlinear small deflection of the FRP-strengthened circular timber beam is established, and the corresponding numerical method is given. The bending deformation of the simply-supported circular timber beam strengthened with the carbon fiber reinforced polymer (CFRP) sheet subject to a uniform load is studied numerically. The influence of the angle and thickness of the CFRP layer as well as the timber strength on the bending deflection of the FRP-strengthened circular timber beam is examined. It is revealed that, with the increases of the thickness and angle, the deflection of the CFRP-strengthened circular timber beam is decreased, and its carrying capacity and ductility are increased. However, when the angle of the layer reaches a certain value, the deflection will no longer decrease with the increase of the angle. At the same time, the nonlinear bending moment-curvature relation of the CFRP-strengthened circular timber beam is simplified as an approximate bilinear constitutive model. The approximate deflections of the simply-supported circular timber beam strengthened with the CFRP sheet are obtained. The results are compared with the linearly elastic bending and nonlinear bending models, showing that the mid-span deflections of a CFRP-strengthened circular timber beam with the approximate bilinear constitutive model are greater than those with the nonlinear constitutive model. The results of its stiffness analysis are on the safe side. 相似文献
10.
This paper aims at analyzing the shapes of the bounded traveling wave solu- tions for a class of nonlinear wave equation with a quintic term and obtaining its damped oscillatory solutions. The theory and method of planar dynamical systems are used to make a qualitative analysis to the planar dynamical system which the bounded traveling wave solutions of this equation correspond to. The shapes, existent number, and condi- tions are presented for all bounded traveling wave solutions. The bounded traveling wave solutions are obtained by the undetermined coefficients method according to their shapes, including exact expressions of bell and kink profile solitary wave solutions and approxi- mate expressions of damped oscillatory solutions. For the approximate damped oscillatory solution, using the homogenization principle, its error estimate is given by establishing the integral equation, which reflects the relation between the exact and approximate so- lutions. It can be seen that the error is infinitesimal decreasing in the exponential form. 相似文献
11.
Viscoelasticity and poroelasticity commonly coexist as time-dependent behaviors in polymer gels.Engineering applications often require knowledge of both behaviors separated;however,few methods exist to decouple viscoelastic and poroelastic properties of gels.We propose a method capable of separating viscoelasticity and poroelasticity of gels in various mechanical tests.The viscoelastic characteristic time and the poroelastic difusivity of a gel define an intrinsic material length scale of the gel.The experimental setup gives a sample length scale,over which the solvent migrates in the gel.By setting the sample length to be much larger or smaller than the material length,the viscoelasticity and poroelasticity of the gel will dominate at diferent time scales in a test.Therefore,the viscoelastic and poroelastic properties of the gel can be probed separately at diferent time scales of the test.We further validate the method by finite-element models and stress-relaxation experiments. 相似文献
12.
13.
A variational method is employed to obtain governing equations and boundary conditions describing finite strain equilibrium configurations of elastomeric gels. Three situations are considered: a liquid saturated gel, an unsaturated gel, and a gel in equilibrium with a vapor of its own liquid. Surface tractions can lead to equilibrium transitions between these cases. The liquid saturated gel is regarded as immersed in a liquid bath. If this bath becomes depleted, then the gel is unsaturated. The degree of unsaturation - a measure of the amount of liquid that would restore a state of saturation - affects the subsequent mechanical behavior. If the unsaturated system is further allowed to condense or evaporate its liquid component at the gel surface, then a new state of equilibrium is achieved. The transition between the unsaturated case and the case of being in equilibrium with the vapor phase corresponds to the chemical potential variable of the gel changing its value from one that is determined by a volume constraint to the value of the chemical potential in the vapor phase. A finite element method is created on the basis of the variational method and demonstrated in the context of eversion, a deformation that imposes very large finite strains. Liquid migration within the gel is not modeled as our focus is on equilibrium states that occur after all such non-equilibrium processes come to rest. 相似文献
14.
Effect of alkali metal ions on the viscoelasticity of concentrated kappa-carrageenan and agarose gels 总被引:1,自引:0,他引:1
The effect of the addition of the monovalent cations Li+, Na+, K+, and Cs+ on the gelation of agarose and kappa-carrageenan aqueous gels has been studied by the measurement of longitudinal vibration. The dynamic Youngs's modulusE of 2% w/w agarose and 0.4–6% w/w kappa-carrageenan gels containing the alkali metal salt LiCl, NaCl, KCl or CsCl of various concentrations from 0 to 4.5 mol/l has been measured at various temperatures. By the addition of the alkali metal salt, the value ofE for agarose gels is influenced only slightly, while for kappa-carrageenanE is increased substantially. Kappa-carrageenan has many sulphate groups. The addition of the alkali metal ions screens the electrostatic repulsion between these groups. As a result of this, the helical structure of kappa-carrageenan is stabilised and the helices may form densely packed aggregates, so increasingE. In contrast, agarose has a naturally stable molecular structure and therefore, the structure and henceE is not sensitive to added ions. The K+ and Cs+ ions increaseE more than Li+ and Na+ for kappa-carrageenan gels. This is interpreted on the basis that these ions are either structure ordering or structure disordering ions for water. 相似文献
15.
In this paper, we investigate the synchronization problems of delayed competitive neural networks with different time scales and unknown parameters. A simple and robust adaptive controller is designed such that the response system can be synchronized with a drive system with unknown parameters by utilizing Lyapunov stability theory and parameter identification. Our synchronization criteria are easily verified and do not need to solve any linear matrix inequality. This research also demonstrates the effectiveness of application in secure communication. Numerical simulations are carried out to illustrate the main results. 相似文献
16.
C.C. Chabalko D.A. Jordan M.R. Hajj H.W. Tieleman 《Journal of Fluids and Structures》2005,20(8):1057-1071
Numerical and wind tunnel simulations of full-scale wind loads on structures are usually performed at a lower Reynolds number and different turbulence parameters. One way to assess the validity of such simulations is through matching magnitudes, duration and/or spectral characteristics of simulated pressure peaks with full-scale data. Because wavelet analysis provides a time/frequency decomposition, it has been proposed as an analysis tool for the intermittent and transient pressure peaks. This work aims at answering the question as to whether different wavelets yield the same-scale decomposition of pressure peaks and velocity events and could, thus, be used as a tool for the analysis of extreme loads on structures. The results show that, by isolating the peaks or events with a modified Gaussian window prior to applying the wavelet transform, the dependence of the measured time scale on different wavelet functions is reduced. The time scales of the pressure peak and the velocity event are estimated to be about the same indicating that one contributing factor, at the peak scale, to the pressure peak lies in the variation of the incoming flow at the same scale. 相似文献
17.
18.
J.G. Swadener E.P. GeorgeG.M. Pharr 《Journal of the mechanics and physics of solids》2002,50(4):681-694
Experimental results are presented which show that the indentation size effect for pyramidal and spherical indenters can be correlated. For a pyramidal indenter, the hardness measured in crystalline materials usually increases with decreasing depth of penetration, which is known as the indentation size effect. Spherical indentation also shows an indentation size effect. However, for a spherical indenter, hardness is not affected by depth, but increases with decreasing sphere radius. The correlation for pyramidal and spherical indenter shapes is based on geometrically necessary dislocations and work-hardening. The Nix and Gao indentation size effect model (J. Mech. Phys. Solids 46 (1998) 411) for conical indenters is extended to indenters of various shapes and compared to the experimental results. 相似文献
19.
This paper presents a direct measurement technique and the computational fluid dynamics (CFD) analysis of in-cylinder turbulence length scales of the flow inside a motored engine. A two-point simultaneous measurement technique was devised using a two-probe laser Doppler velocimetry (LDV) system. The engine was made transparent by replacing the liner with a quartz tube. The operating condition was set at the motoring speed of 500 rpm. This paper demonstrates the measurement of radially separated lateral and longitudinal integral length scales at the location of 13 mm beneath the center of the cylinder head. The measured integral length scales were then compared with the computational turbulence dissipation length scale resulted from a k– model in an engine simulation code, KIVA-3. The comparison shows a reasonable level of agreement in both tendency and magnitude in such a complex flow field. 相似文献