首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A facile and simple one-step solvothermal method has been developed to synthesize polyethyleneimine (PEI)-modified magnetic nanoparticles. Characterization of morphology, surface charges, crystal structure, and magnetic property confirmed the efficiency of this facile synthesis route. Lipase immobilized on the PEI-modified magnetic nanoparticles was used to synthesize vitamin A palmitate from vitamin A acetate and palmitic acid. The reuse of immobilized lipase can be extended to eight times by removing water during esterification with a conversion rate above 80 % for 12 h.  相似文献   

2.
Nanocrystalline La0.73Sr0.27MnO3 perovskite oxides with an average particle size of 26 nm were synthesized using the sol-gel method. To make water based magnetic fluid, the obtained nanoparticles were coated by self-organized bilayer surfactant containing oleic acid and sodium dodecyl sulfate as inner and outer layer, respectively. The bare and coated nanoparticles were characterized by x-ray powder diffraction, Fourier transform infrared spectroscopy, thermogravimetry, and transmission electron microscopy analyses. Calorimetric analysis was used to determine the heat generation efficiency of the prepared magnetic fluid under various alternating magnetic fields. The obtained results revealed that the maximum temperature achieved by the nanoparticles is in the therapeutic temperature range which enables these materials to be used as self-controlled heating agents in magnetic hyperthermia therapy.  相似文献   

3.
Permanent magnets are a class of critical materials for information storage, energy storage, and other magneto-electronic applications. Compared with conventional bulk magnets, magnetic nanoparticles (MNPs) show unique size-dependent magnetic properties, which make it possible to control and optimize their magnetic performance for specific applications. The synthesis of MNPs has been intensively explored in recent years. Among different methods developed thus far, chemical synthesis based on solution-phase reactions has attracted much attention owing to its potential to achieve the desired size, morphology, structure, and magnetic controls. This Minireview focuses on the recent chemical syntheses of strongly ferromagnetic MNPs (Hc>10 kOe) of rare-earth metals and FePt intermetallic alloys. It further discusses the potential of enhancing the magnetic performance of MNP composites by assembly of hard and soft MNPs into exchange-coupled nanocomposites. High-performance nanocomposites are key to fabricating super-strong permanent magnets for magnetic, electronic, and energy applications.  相似文献   

4.
Russian Journal of General Chemistry - A formulation superior in absorption compared to any biological tissue, including bone one, has been obtained by immobilization of radiopaque substance...  相似文献   

5.
通过油酸盐前驱体高温热解法制备出大小均匀的钴掺杂四氧化三铁球形纳米粒子, 其钴/铁摩尔比可以通过调节油酸钴与油酸铁的比例进行调变. 当产物中钴/铁摩尔比从0.024增加到0.156, 所制备的氧化铁纳米粒子的饱和磁矩从39 emu·g-1逐渐减小到30 emu·g-1, 而矫顽力从0 Oe升至190 Oe. 在305℃下, 随着反应体系的热解时间由0.5 h 增加到3 h, 所制备出的氧化铁纳米粒子尺寸逐渐由7 nm增加到14 nm. 热解时间较短时, 以高价态的四氧化三铁的晶型为主, 辅之以少量的氧化亚铁; 热解时间增加至2 h, 产物的晶型为四氧化三铁和氧化亚铁的复合物; 而继续增加热解时间至3 h, 除四氧化三铁和氧化亚铁之外, 还出现少量的零价态的CoFe合金, 说明铁(钴)元素经历了由三价到二价, 最后被还原为零价的过程. 随着反应温度的升高, 产物的尺寸逐渐增大, 同时产物中氧化亚铁的含量增多.  相似文献   

6.
羧甲基壳聚糖磁性纳米粒子的合成及应用   总被引:1,自引:0,他引:1  
通过合成油酸修饰的Fe3O4纳米粒子和羧甲基壳聚糖直接包埋油酸修饰的Fe3O4纳米粒子的两步合成法制备了羧甲基壳聚糖磁性纳米粒子。采用透射电子显微镜、傅里叶变换红外光谱、振动样品磁强计和同步热分析测试技术对制备的羧甲基壳聚糖磁性纳米粒子进行了表征。所得磁性纳米粒子呈规则球形,粒径约为10 nm;表面含羧基,且具有很好的顺磁性和稳定性。考察了羧甲基壳聚糖磁性纳米粒子对阿霉素的载药量和对阿霉素在磷酸盐缓冲溶液中的缓释性能。结果表明,磁性纳米粒子对阿霉素展示了较高的载药量(91.8 mg/g),结合了阿霉素的磁性复合物对阿霉素的缓释作用明显,说明制备的羧甲基壳聚糖磁性纳米粒子有望作为治疗肿瘤的纳米磁靶向药物输送载体。  相似文献   

7.
Soil enzymes, such as invertase, urease, acidic phosphatase and catalase, play critical roles in soil biochemical reactions and are involved in soil fertility. However, it remains a great challenge to efficiently concentrate soil enzymes and sensitively assess enzyme activity. In this study, we synthesized phenylboronic acid-functionalized magnetic nanoparticles to rapidly capture soil enzymes for sensitive soil enzyme assays. The iron oxide magnetic nanoparticles (MNPs) were firstly prepared by the co-precipitation method and then functionalized by (3-aminopropyl)triethoxysilane, polyethyleneimine and phenylboric acid in turn, obtaining the final nanoparticles (MNPPBA). Protein-capturing assays showed that the functionalized MNPs had a much higher protein-capturing capacity than the naked MNPs (56% versus 6%). Moreover, MNPPBA almost thoroughly captured the tested enzymes, i.e., urease, invertase, and alkaline phosphatase, from enzyme solutions. Based on MNPPBA, a soil enzyme assay method was developed by integration of enzyme capture, magnetic separation and trace enzyme analysis. The method was successfully applied in determining trace enzyme activity in rhizosphere soil. This study provides a strategy to sensitively determine soil enzyme activity for mechanistic investigation of soil fertility and plant–microbiome interaction.  相似文献   

8.
Human paraoxonase 1 (h-PON1) is a ~40 kDa multi-tasking enzyme that plays a major role in determining individual susceptibility towards various disease conditions. It is a strong candidate for the development of therapeutic intervention for various diseases and other conditions in humans. However, purified h-PON1 is unstable and there is a need to find condition(s) that can increase the shelf life of the enzyme. In this report, we present the results of our investigation on the effect of excipients on the stability of bacterially produced human PON1 when stored under different storage conditions. Our results show that (a) glycine and serine are most effective in stabilizing the enzyme when stored in aqueous buffer at 25 °C for 30 days, and (b) trehalose, maltose, and BSA exerted maximum stabilization effect when the enzyme was stored in freeze-dried form at 25 °C for 60 days. Results of this study can be used to increase the shelf life of purified h-PON1 enzyme.  相似文献   

9.
Non‐stoichiometric wüstite particles (Fe1?yO) are synthesized using the controlled room‐temperature hydrolysis of the organometallic precursor {Fe[N(SiMe3)2]2}. Particles stabilized by hexadecylamine with a diameter of 5 nm are obtained. For such small nanoparticles, a distorted crystallographic structure is evidenced by wide‐angle X‐ray scattering at room temperature and reported for the first time. The study of the magnetic properties indicates that these particles are composed of an antiferromagnetic core surrounded by a ferromagnetic shell. According to the Néel theory, we demonstrate that this shell consists of 1.5 % of Fe3+ ions ferromagnetically coupled with Fe2+ ions.  相似文献   

10.
Russian Journal of Organic Chemistry - A novel magnetic Co nanoparticle catalyst was prepared by coating Fe304magnetic nanoparticles with tetraethyl orthosilicate functionalized with...  相似文献   

11.
Mg-doped Ni nanoparticles with good soft magnetic properties were prepared with the sol-gel method and were sintered at 400, 500, 600, and 900℃ in argon atmosphere, respectively. The structure and magnetic properties of the samples were studied by means of X-ray diffraction, TEM, and VSM magnetometers. X-Ray powder diffraction results show that Ni-Mg solid solution was formed with the single phase of face-centered cubic(fcc) structure. The particle size became larger with the increase of temperature. When the sintering temperature was 400 °C, the particle size was 6.3 nm, whereas it was 46.2 nm at 900 °C. Both the saturation magnetization(Ms) and the coercivity were enhanced with the increase of the particle size. The Ms values of the samples ranged from 18.965 to 46.766 emu/g and the coercivity ranged from 1051.3568 to 9145.0848 A/m.  相似文献   

12.
Magnetic Fe3O4@SiO2 nanoparticles with superparamagnetic properties were prepared via a reverse mi-croemulsion method at room temperature. The as-prepared samples were characterized by transmission electron mi-croscopy(TEM), X-ray diffractometry(XRD), and vibrating sample magnetometry(VSM). The Fe3O4@SiO2 nanoparticles were modified by (3-aminopropyl)triethoxysilane(APTES) and subsequently activated by glutaraldehyde(Glu). Protein A was successfully immobilized covalently onto the Glu activated Fe3O4@SiO2 nanoparticles. The adsorption capacity of the nanoparticles was determined on an ultraviolet spectrophotometer(UV) and approximately up to 203 mg/g of protein A could be uniformly immobilized onto the modified Fe3O4@SiO2 magnetic beads. The core-shell of the Fe3O4@SiO2 magnetic beads decorated with protein A showed a good binding capacity for the chime-ric anti-EGFR monoclonal antibody(anti-EGFR mAb). The purity of the anti-EGFR mAb was analyzed by virtue of HPLC. The protein A immobilized affinity beads provided a purity of about 95.4%.  相似文献   

13.
铁酸钴纳米微粒的共沉淀法制备和磁性质(英)   总被引:5,自引:0,他引:5  
The cobalt ferrite nanoparticles were prepared by coprecipitation in the presence of poly (N-vinylpyrrolidone) (PVP) and characterized by XRD, TEM, EDX and magnetometry. XRD results suggest the formation of pure cobalt ferrite. The mean particle sizes of CoFe2O4 samples annealed at 400 ℃ and 600 ℃ were ca. 6 and 25 nm, respectively as obtained by transmission electron microscopy (TEM). The magnetic measurements indicated that nano-particles obtained at 400 ℃ were superparamagnetic while that prepared at 600 ℃ were ferrimagnetic.  相似文献   

14.
采用高温水解法合成了具有超顺磁性且表面修饰的Fe3O4纳米粒子,将该Fe3O4纳米粒子作为种子,采用"非经典控核生长"方法在其表面生长SiO2棒状结构,获得了非对称Fe3O4-SiO2介孔纳米粒子,通过调节硅源加入量调控非对称粒子棒状部分的长度.由于一次生长出的结构尺寸有限,使用"二次生长法"进一步增加纳米棒部分的长度,最后对该非对称粒子进行了药物的装载与释放实验,表明其对阿霉素具有缓释作用.  相似文献   

15.
以Fe(CO)5和Ni(HCOO)2为前驱物,十八烯为溶剂,在表面活性剂和分散剂油酸和油胺的协同作用下,通过前驱体的液相热分解和自合金化,制备铁镍合金纳米颗粒。通过XRD和TEM研究了产物的微观结构,并对产物的磁学性质进行了表征。结果表明,在反应温度为200 ℃,油胺与油酸及甲酸镍的物质的量比为4∶2∶1,反应时间为20 min时可得形貌可控、抗氧化性强的面心立方晶体结构的平面三角形纳米铁镍合金,晶粒尺寸为15~55 nm。磁性测量表明,300 K时三角形形貌铁镍合金的饱和磁化强度为15.5 emu·g-1,矫顽力趋近于零,呈现超顺磁性;在低温(4.2 K)时,铁镍合金的饱和磁化强度为17.5 emu·g-1,矫顽力增大明显。  相似文献   

16.
以磺基琥珀酸二辛酯钠盐(AOT)为表面活性剂,采用反胶束法合成了憎水性CoFe/Au纳米粒子, 利用配体交换、水洗等去除AOT并使纳米粒子分级.采用紫外-可见光谱(UV-Vis)、透射电镜(TEM)、X射线衍射(XRD)、X射线电子能量散射(EDX)及等离子发射光谱 (ICP)等对产物进行了表征,通过超导量子干涉仪(SQIUD)研究了纳米粒子的磁性质.结果表明,反胶束法合成的CoFe/Au三金属纳米粒子具有较好的单分散性和稳定性,平均粒径约为4 nm.当外磁场强度为1.5×104 A/m时,阻塞温度Tb为65 K,温度高于Tb时纳米粒子显示出超顺磁性,低于Tb时呈铁磁性,在5 K时其矫顽力(Hc)达4.67×104 A/m.  相似文献   

17.
In this study, FeNi magnetic alloy nanoparticles (MANPs) were employed for the forensic analysis of four poisons—dimethametryn, napropamide, thiodicarb, and strychnine—using surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS). FeNi MANPs were prepared via coprecipitation using two reducing agents, sodium borohydride (NaBH4) and hydrazine monohydrate (N2H4·H2O), to optimize the prepared MANPs and investigate their effect on the performance of SALDI-MS analysis. Thereafter, SALDI-MS analysis was carried out for the detection of three pesticides and a rodenticide. The prepared substrate offered sensitive detection of the targeted analytes with LOD values of 1 ng/mL, 100 pg/mL, 10 ng/mL, and 200 ng/mL for dimethametryn, napropamide, thiodicarb, and strychnine, respectively. The relative standard deviation (%RSD) values were in the range of 2.30–13.97% for the pesticides and 15–23.81% for strychnine, demonstrating the good spot-to-spot reproducibility of the FeNi substrate. Finally, the MANPs were successfully employed in the analysis of poison-spiked blood serum using a minute quantity of the sample with an LOD of 700 ng/mL dimethametryn and napropamide, 800 ng/mL thiodicarb, and 500 ng/mL strychnine. This study has great potential regarding the analysis of several poisons that may be found in human serum, which is significant in cases of self-harm.  相似文献   

18.
19.
纳米磁粉固定化酶催化合成 α-D-葡萄糖-1-磷酸   总被引:2,自引:0,他引:2  
董青  欧阳立明  刘建文  许建和 《催化学报》2010,31(10):1227-1232
 建立了以麦芽糊精和磷酸盐为底物, 在常温下合成 α-D-葡萄糖-1-磷酸的生物催化体系. 从大肠杆菌 K12 中克隆表达了麦芽糊精磷酸化酶, 并固定化在氨基修饰的磁性纳米颗粒上, 以便于酶的回收和重复利用. 在优化的反应条件下, 于 200 ml 体系中连续使用该固定化酶 8 批次, 催化合成了 α-D-葡萄糖-1-磷酸. 经过简单的纯化步骤, 最终得到 440 mg 产品, 分离产率为 70.5%.  相似文献   

20.
杜凯  朱艳红  徐辉碧  杨祥良 《化学进展》2011,23(11):2287-2298
多功能磁性纳米粒由于其独特的性质而受到广泛的关注。磁性纳米粒可以与荧光探针、生物靶向分子或抗肿瘤药物等相结合实现磁性纳米粒的多功能化,因此在多模式成像、癌症的靶向诊断与治疗中有较好的应用前景。本文介绍了磁性纳米粒的合成以及多功能磁性纳米粒的构建方法,重点介绍了核壳型、哑铃型和组合杂化型三种不同类型多功能磁性纳米粒的合成方法。多功能磁性纳米粒通常具有粒径小、超顺磁性以及荧光等独特性质,在此基础上对纳米粒表面进行稳定化和靶向性修饰后即可在多模式成像、特异性靶向药物输送、基因转染等生物医学领域得到应用。最后指出了当前研究中需要解决的问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号