首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biosynthesis of structurally novel carotenoids in Escherichia coli   总被引:5,自引:0,他引:5  
Previously, we utilized in vitro evolution to alter the catalytic functions of several carotenoid enzymes and produce the novel carotenoids tetradehydrolycopene and torulene in Escherichia coli. Here we report on the successful extension of these pathways and the C(30) carotenoid diaponeurosporene pathway with additional carotenoid genes. Extension of the known acyclic C(30) pathway with C(40) carotenoid enzymes-spheroidene monooxygenase and lycopene cyclase-yielded new oxygenated acylic products and the unnatural cyclic C(30) diapotorulene, respectively. Extension of acyclic C(40) pathways with spheroidene monooxygenase generated novel oxygenated carotenoids including the violet phillipsiaxanthin. Extension of the torulene biosynthetic pathway with carotene hydroxylase, desaturase, glucosylase, and ketolase yielded new torulene derivatives. These results demonstrate the utility of extending an in vitro evolved central metabolic pathway with catalytically promiscuous downstream enzymes in order to generate structurally novel compounds.  相似文献   

2.
Biosynthesis of polyhydroxyalkanoates (PHAs) consisting of 3-hydroxyalkanoates (3HAs) of 4 to 10 carbon atoms was examined in metabolically engineered Escherichia coli strains. When the fadA and/or fadB mutant E. coli strains harboring the plasmid containing the Pseudomonas sp. 61-3 phaC2 gene and the Ralstonia eutropha phaAB genes were cultured in Luria-Bertani (LB) medium supplemented with 2 g/L of sodium decanoate, all the recombinant E. coli strains synthesized PHAs consisting of C4, C6, C8, and C10 monomer units. The monomer composition of PHA was dependent on the E. coli strain used. When the fadA mutant E. coli was employed, PHA containing up to 63 mol% of 3-hydroyhexanoate was produced. In fadB and fadAB mutant E. coli strains, 3-hydroxybutyrate (3HB) was efficiently incorporated into PHA up to 86 mol%. Cultivation of recombinant fadA and/or fadB mutant E. coli strains in LB medium containing 10 g/L of sodium gluconate and 2 g/L of sodium decanoate resulted in the production of PHA copolymer containing a very high fraction of 3HB up to 95 mol%. Since the material properties of PHA copolymer consisting of a large fraction of 3HB and a small fraction of medium-chain-length 3HA are similar to those of low-density polyethylene, recombinant E. coli strains constructed in this study should be useful for the production of PHAs suitable for various commercial applications.  相似文献   

3.
Cloning and expression of L-asparaginase gene in Escherichia coli   总被引:1,自引:0,他引:1  
The L-asparaginase (ASN) from Escherichia coli AS1.357 was cloned as a DNA fragment generated using polymerase chain reaction technology and primers derived from conserved regions of published ASN gene sequences. Recombinant plasmid pASN containing ASN gene and expression vector pBV220 was transformed in different E. coli host strains. The activity and expression level of ASN in the engineering strains could reach 228 IU/mL of culture fluid and about 50% of the total soluble cell protein respectively, more than 40-fold the enzyme activity of the wild strain. The recombinant plasmid in E. coli AS1.357 remained stable after 72h of cultivation and 5h of heat induction without selective pressure. The ASN gene of E. coli AS1.357 was sequenced and had high homology compared to the reported data.  相似文献   

4.
The sucrose isomerase (SIase) gene from an efficient strain of Erwinia rhapontici NX-5 for isomaltulose hyperproduction was cloned and overexpressed in Escherichia coli. Protein sequence alignment revealed that SIase was a member of the glycoside hydrolase 13 family. The molecular mass of the purified recombinant protein was estimated at 66 kDa by SDS-PAGE. The SIase had an optimal pH and temperature of 5.0 and 30 °C, respectively, with a K m of 257 mmol/l and V max of 48.09 μmol/l/s for sucrose. To the best of our knowledge, the recombinant SIase has the most acidic optimum pH for isomaltulose synthesis. When the recombinant E. coli (pET22b- palI) cells were used for isomaltulose synthesis, almost complete conversion of sucrose (550 g/l solution) to isomaltulose was achieved in 1.5 h with high isomaltulose yields (87%). The immobilized E. coli cells remained stable for more than 30 days in a “batch”-type enzyme reactor. This indicated that the recombinant SIase could continuously and efficiently produce isomaltulose.  相似文献   

5.
A carotenoid desaturase homolog from Staphylococcus aureus (CrtOx) was identified. When expressed in engineered E. coli cells synthesizing linear C(30) carotenoids, polar carotenoid products were generated, identified as aldehyde and carboxylic acid C(30) carotenoid derivatives. The major product in this engineered pathway is the fully desaturated C(30) dialdehyde carotenoid 4,4'-diapolycopen-4,4'-dial. Very low carotenoid yields were observed when CrtOx was complemented with the C(40) carotenoid lycopene pathway. But extension of an in vitro evolved pathway of the fully desaturated 2,4,2',4'-tetradehydrolycopene produced the structurally novel fully desaturated C(40) dialdehyde carotenoid 2,4,2',4'-tetradehydrolycopendial. Directed evolution of CrtOx by error-prone PCR resulted in a number of variants with higher activity on C(40) carotenoid substrates and improved product profiles. These findings may provide new biosynthetic routes to highly polar carotenoids with unique spectral properties desirable for a number of industrial and pharmaceutical applications.  相似文献   

6.
The genes encoding purine nucleoside phosphorylase (PNPase), uridine phosphorylase (UPase), and thymidine phosphorylase (TPase) from Escherichia coli K12 were cloned respectively into expression vector pET-11a or pET-28a. The recombinant plasmids were transformed into the host strain E. coli BL21(DE3) to construct four co-expression recombinant strains. Two of them had double recombinant plasmids (DUD and DAD) and the other two had tandem recombinant plasmid (TDU and TDA) in them. Under the repression of antibiotic, recombinant plasmids stably existed in host strains. Enzymes were abundantly expressed after induction with IPTG and large amount of target proteins were expressed in soluble form analyzed with SDS-PAGE. Compared with the host strain, enzyme activity of the recombinant strains had been notably improved. In the transglycosylation reaction, yield of 2,6-diaminopurine-2’-deoxyriboside (DAPdR) from 2,6-diaminopurine (DAP) and thymidine reached 40.2% and 51.8% catalyzed by DAD and TDA respectively; yield of 2,6-diaminopurine riboside (DAPR) from DAP and uridine reached 88.2% and 58.0% catalyzed by TDU and DUD respectively.  相似文献   

7.
The thermogenic curves of metabolism of the four strains of Escherichia coli pUC19cab/JM109, pUC19cab/XL-IBlue, JM109 and XL-IBlue were determined using the LKB-2277 BioActivity Monitor and the ampoule method at 37°C. The pUC19cab/JM109 and pUC19cab/XL-IBlue are recombinant E. coli strains bearing the same foreign plasmid pUC19cab, which confers the ability to produce polyhydroxyalkanoates (PHAs). The yield of PHAs of pUC19cab/XL-IBlue was higher than that of pUC19cab/JM109. XL-IBlue and JM109 were the host bacteria. The heat flow of these strains was XL-Blue≈JM109>pUC19cab/JM109>pUC19cab/XL-IBlue. These results indicate an obvious interrelation between the PHAs production and the heat flow rate of E. coli strains.  相似文献   

8.
Polyhydroxyalkanoates are polyesters synthesized by numerous microorganisms. These polyesters are biodegradable and have similar properties to those of conventional plastics. Cupriavidus taiwanensis strain 184 is phylogenetically related to the well-known polyhydroxybutyrate (PHB) producer Ralstonia eutropha (Cupriavidus necator) and is also shown to be able to accumulate significant amounts of PHB. In this study, we cloned the PHB synthesis genes (phaCAB) from C. taiwanensis 184 into Escherichia coli for biosynthesis of PHB. The recombinant E. coli strains were able to synthesize significant amounts of PHB. The PHB amounted to about 66∼70% of total cell material of these recombinant strains.  相似文献   

9.
The 5-aminolevulinate (ALA) synthase gene (hemA) from Agrobacterium radiobacter zju-0121, which was cloned previously in our laboratory, contains several rare codons. To enhance the expression of this gene, Escherichia coli Rosetta(DE3), which is a rare codon optimizer strain, was picked out as the host to construct an efficient recombinant strain. Cell extracts of the recombinant E. coli were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under the appropriate conditions. The results indicated that the activity of ALA synthase expressed in Rosetta(DE3)/pET-28a(+)-hemA was about 20% higher than that in E. coli BL21(DE3). Then the effects of precursors (glycine and succinate) and glucose, which is an inhibitor for ALA dehydratase as well as the carbon sources for cell growth, on the production of 5-aminolevulinate were investigated. Based on an optimal fed-batch culture system described in our previous work, up to 6.5 g/l (50 mM) ALA was produced in a 15-l fermenter.  相似文献   

10.
Radiocomplexation of fleroxacin (FXN) with technetium-99m and its characterization in terms of in vitro stability in saline and serum solutions, in vitro binding with live and heat-killed Escherichia coli, and biodistribution in male Wistar rats (MWR) artificially infected with live and heat-killed E. coli was studied. The 99mTc-FXN complex showed a radiochemical purity (RCP) yield of 98.10 ± 0.24% at 30 min using 125 μg of stannous fluoride, 74 MBq of sodium pertechnetate, and 2 mg of FXN. The complex was found to be more than 90% stable up to 4 h after constitution in normal saline. In serum, the emergence of 16.50% undesirable species was observed within 16 h of incubation at 37 °C. The 99mTc-FXN complex showed saturated in vitro binding with E. coli with a maximum value of 65.00% at 90 min. A fivefold increase in uptake of the complex was noted in the infected when compared with the inflamed and normal muscle of the MWR infected with live E. coli. The stable radiochemical profile in saline and serum, saturated in vitro binding with E. coli and increased uptake in the infected muscle, confirmed the potential of the 99mTc-FXN complex as an E. coli infection imaging agent.  相似文献   

11.
The influence of total organic carbon (TOC), pH, and mating temperature on transfer of chromium-resistant plasmid between Escherichia coli strains in terms of variation in the number of transconjugants formed and variation in transfer frequency was investigated. In vitro transfer was studied in five chromate-tolerant E. coli strains isolated from tannery effluent using E. coli K12 J62 (Nalr Lac) as a recipient. Conjugal transfer of different selection markers was observed in three strains. The study was carried out in sterile wastewater. A gradual decrease was observed both in the number of transconjugants and in transfer frequencies as the concentration of TOC in the mating medium descended from 10,095 to 1.2 mg of C/L, obtaining the maximum values with a TOC concentration of 10,095 mg of C/L. The number of transconjugants and the transfer frequency were maximum at 30°C. However, neither the transfer frequency nor the transconjugant number varied significantly in the range of pHs assayed. The strains were also found resistant to different heavy metals and antibiotics. Curing of these strains resulted in loss of one or more resistance markers indicating the plasmid-borne resistance. It is inferred that plasmid transfer by conjugation occurs in wastewater bodies within a wide range of conditions.  相似文献   

12.
Construction and comparison of recombinant Escherichia coli strains harboring the polyhydroxybutyrate (PHB) operon from Ralstonia entropha using vectors possessing different promotors, as well as the production of PHB from soy waste by the recombinant strain, are reported. The lac promotor was the most efficient on expression of the phb operon among the three promotors studied: i.e., lac promotor, T7 promotor and the normal σ70 promotor. The pKS/PHB was the most efficient plasmid for phboperon expression among the three plasmids used: i.e., pKS, pAED4, and pJM9131. It was observed that isopropyl-β-d-thiogalactopyranoside was not required for the induction of the expression of phb operon. The cell dry wt and polyhydroxyalkan cote content by E. coli XL-1 Blue (pKS/PHB) were 3.025 g/L and 27.83%, respectively.  相似文献   

13.
Abstract— Three carotenoids, spheroidene, 3,4-dihydrospheroidene and 3,4,5,6-tetrahydrospheroidene, having 8, 9 and 10 conjugated carbon-carbon double bonds, respectively, were incorporated into Rhodobacter (Rb.) sphaeroides R-26.1 reaction centers. The extents of binding were found to be 95±5% for spheroidene, 65±5% for 3,4-dihydrospheroidene and 60±10% for 3,4,5,6-tetrahydrospheroidene. The dynamics of the triplet states of the primary donor and carotenoid were measured at room temperature by flash absorption spectroscopy. The carotenoid, spheroidene, was observed to quench the primary donor triplet state. The triplet state of spheroidene that was formed subsequently decayed to the ground state with a lifetime of 7.0±0.5 μs. The primary donor triplet lifetime in the Rb. sphaeroides R-26.1 reaction centers lacking carotenoids was 60±5 μs. Quenching of the primary donor triplet state by the carotenoid was not observed in the Rb. sphaeroides R-26.1 reaction centers containing 3,4-dihydrospheroidene nor in the R-26.1 reaction centers containing 3,4,5,6-tetrahydrospheroidene. Triplet-state electron paramagnetic resonance was also carried out on the samples. The experiments revealed carotenoid triple-state signals in the Rb. sphaeroides R-26.1 reaction centers incorporated with spheroidene, indicating that the primary donor triplet is quenched by the carotenoid. No carotenoid signals were observed from Rb. sphaeroides R-26.1 reaction centers incorporating 3,4-dihydrospheroidene nor in reaction centers incorporating 3,4,5,6-tetrahydrospheroidene. Circular dichroism, steady-state absorbance band shifts accompanying the primary photochemistry in the reaction center and singlet energy transfer from the carotenoid to the primary donor confirm that the carotenoids are bound in the reaction centers and interacting with the primary donor. These studies provide a systematic approach to exploring the effects of carotenoid structure and excited state energy on triplet transfer between the primary donor and carotenoids in reaction centers from photosynthetic bacteria.  相似文献   

14.
In theEscherichia coli cell-free system, the modification of cell extract can be achieved by preparation of the strains carrying additional property or those being induced with a certain gene expression prior to harvesting. In this study, we analyzed the cell-free system with S30 extract containing T7 RNA polymerases (S30 extract-T7pol) prepared from E.coli BL21(DE3) strain, which includes T7 RNA polymerase from extrinsic genes by IPTG induction, as a model for the improvement of the cell-free system. The fact that a significant degree of mRNA degradation was observed in the cell-free system with S30 extract-T7pol indicates the increase of ribonuclease activity was an unfavorable influence derived from the cell-extract modification process. We also showed that this influence was settled by the addition of an effective ribonuclease inhibitor, such as copper (II) ion, to the reaction mixture.  相似文献   

15.
The carotenoid triplet states in the light-harvesting complex B800–850from purple bacterium Rubrivivax gelatinosus were characterized by absorption-detected magnetic resonance in zero magnetic field (ADMR) spectroscopy. Detailed HPLC analysis of carotenoids from B800–850demonstrated the presence of several carotenoids bound to the complex: the major ones are hydroxyspheroidene and spheroidene (together 80%), followed by neurosporene and hydroxyneurosporene (7%), spheroidenone and hydroxyspheroidenone (7.5%) and two other minor carotenoids that could be 3,4-dihydrospheroidenone and 3,4-dihydrohydroxyspheroidenone (5.5%). Three triplet states originating from carotenoids present in the B800–850were observed. The identical T-S spectra recorded at selectively chosen 2|E| transitions of carotenoids indicated that all these triplet states can be attributed to three different populations of one carotenoid family, probably to spheroidene and to hydroxyspheroidene, with different out-of-plane distortions of their polyene chain due to a different protein environment. Triplet states of the neurosporene and the spheroidenone families are probably not observed because of the low signal amplitude.  相似文献   

16.
The goal of the present study was to increase the content of intracellular long-chain fatty acids in two bacterial strains, Pseudomonas aeruginosa PA14 and Escherichia coli K-12 MG1655, by co-overexpressing essential enzymes that are involved in the fatty acid synthesis metabolic pathway. Recently, microbial fatty acids and their derivatives have been receiving increasing attention as an alternative source of fuel. By introducing two genes (accA and fabD) of P. aeruginosa into the two bacterial strains and by co-expressing with them the fatty acyl?Cacyl carrier protein thioesterase gene of Streptococcus pyogenes (strain MGAS10270), we have engineered recombinant strains that are efficient producers of long-chain fatty acids (C16 and C18). The recombinant strains exhibit a 1.3?C1.7-fold increase in the production of long-chain fatty acids over the wild-type strains. To enhance the production of total long-chain fatty acids, we researched the carbon sources for optimized culture conditions and results were used for post-culture incubation period. E. coli SGJS17 (containing the accA, fabD, and thioesterase genes) produced the highest content of intracellular total fatty acids; in particular, the unsaturated fatty acid content was about 20-fold higher than that in the wild-type E. coli.  相似文献   

17.
S‐thiolation is a reversible post‐translational modification in which thiol metabolites of low molecular masses are linked to protein sulfhydryl groups through disulfide bonds. This modification is commonly observed in recombinant proteins secreted from E. coli cells. Since it can alter protein functions and introduce molecular heterogeneity, S‐thiolation is undesirable for recombinant protein production. To date, few published studies have characterized thiol modifiers or investigated the mechanism of S‐thiolation in recombinant proteins. In this work, reversed‐phase liquid chromatography and mass spectrometry were used to characterize four of the most abundant thiol modifiers on recombinant proteins secreted from E. coli BL21 (DE3) strain. These thiol modifiers have been identified as glutathione, 4‐phosphopantetheine, gluconoylated glutathione, and dephosphorylated coenzyme A. S‐thiolation by these thiol modifiers increases protein mass by 305, 356, 483, and 685 Da, respectively. These specific mass increases can be used as markers for identifying S‐thiolation in recombinant proteins. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
The triosephosphate isomerase of Leishmania donovani (LdTIM) was expressed at high level in Escherichia coli. The TIM gene was cloned in expression vector pET-23(a) with C-terminal 6× His tag fused in frame, and expressed as a 27.6-kDa protein in E. coli as inclusion bodies. The recombinant LdTIM from E. coli lysate was solubilized in 6 M guanidine hydrochloride and purified by Ni-NTA chromatography. In the present study, the effect of bovine serum albumin on the reactivation of TIM was investigated. Furthermore, 8-anilino-1-naphthalene sulfonic acid was used to detect the structural changes induced by bovine serum albumin (BSA). Here, we conclude that BSA assists in the refolding and regain of LdTIM enzyme activity by providing framework for structure formation. This study indicates that numerous protein–protein contacts are constantly occurring inside the cell that leads to the formation of native protein.  相似文献   

19.
Selectivity towards geometric isomers is a superior feature of a C30 polymeric stationary phase. Therefore, lycopene isomers synthesized in Escherichia coli transformants by catalysis of divers carotene desaturases were separated on this stationary phase. Due to their spectral characteristics and by co-chromatography with nuclear magnetic resonance-characterized carotene standards, some of them could be identified. Most of the lycopene isomers were cyclized by lycopene cyclase yielding mainly 9Z, 13Z and all-E beta-carotene. In contrast, 7,9,7',9'Z prolycopene is accumulating since it cannot be converted by this enzyme. Finally several acyclic hydroxycarotenoids with a chain of 30, 40 and 45 carbon atoms differing in the length of the polyene chain from 9 to 13 were separated on the C30 stationary phase. Longer retention times were observed when the length of the molecule increased and also when the conjugated double bond system was extended. Corresponding monocyclic carotenoids were less retained on the C30 stationary phase and derivatives with an epsilon-ionone end group eluted earlier than with a beta-end group.  相似文献   

20.
Modification of the phosphoenolpyruvate/sugar phosphotransferase system (PTS) has shown improvement in sugar coassimilation in Escherichia coli production strains. However, in preliminary experiments under anaerobic conditions, E. coli strains with an inactive PTS and carrying pLOI1594, which encodes pyruvate decarboxylase and alcohol dehydrogenase from Zymomonas mobilis, were unable to grow. These PTS strains were previously evolved under aerobic conditions to grow rapidly in glucose (PTS- Glucose+ phenotype). Thus, in this work, applying a continuous culture strategy under anaerobic conditions, we generate a new set of evolved PTS Glucose+ mutants, VH30N1 to VH30N6. Contrary to aerobically evolved mutants, strains VH30N2 and VH30N4 carrying pLOI1594 grew in anaerobiosis; also, their growth capacity was restored in a 100%, showing specific growth rates (μ ~ 0.12 h−1) similar to the PTS+ parental strain (μ = 0.11 h−1). In cultures of VH30N2/pLOI1594 and VH30N4/pLOI1594 using a glucose–xylose mixture, xylose was totally consumed and consumption of sugars occurred in a simultaneous manner indicating that catabolic repression is alleviated in these strains. Also, the efficient sugar coassimilation by the evolved strains caused an increment in the ethanol yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号