首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the $\overline{\nu}_{e}-e$ scattering from low to ultrahigh energy in the framework of Higgs Triplet Model (HTM). We add the contribution of charged Higgs boson exchange to the total cross section of the scattering. We obtain the upper bound $h_{ee}/M_{H^{\pm}}\lesssim2.8\times10^{-3}~\mbox{GeV}^{-1}$ in this process from low energy experiment. We show that by using the upper bound obtained, the charged Higgs contribution can give enhancements to the total cross section with respect to the SM prediction up to 5.16 % at E≤1014 eV and maximum at $s\approx M_{H^{\pm}}^{2}$ and would help to determine the feasibility experiments to discriminate between SM and HTM at current available facilities.  相似文献   

2.
In view of the discovery of a new boson by the ATLAS and CMS Collaborations at the LHC, we present an update of the global Standard Model (SM) fit to electroweak precision data. Assuming the new particle to be the SM Higgs boson, all fundamental parameters of the SM are known allowing, for the first time, to overconstrain the SM at the electroweak scale and assert its validity. Including the effects of radiative corrections and the experimental and theoretical uncertainties, the global fit exhibits a p-value of 0.07. The mass measurements by ATLAS and CMS agree within 1.3σ with the indirect determination $M_{H}=94^{\,+25}_{\,-22}~\mathrm{GeV}$ . Within the SM the W boson mass and the effective weak mixing angle can be accurately predicted to be M W =80.359±0.011 GeV and $\sin ^{2}\theta ^{\ell }_{{\rm eff}}= 0.23150\pm 0.00010$ from the global fit. These results are compatible with, and exceed in precision, the direct measurements. For the indirect determination of the top quark mass we find $m_{t}= 175.8^{\:+2.7}_{\:-2.4}~ \mathrm {GeV}$ , in agreement with the kinematic and cross-section-based measurements.  相似文献   

3.
The four LEP collaborations, ALEPH, DELPHI, L3 and OPAL, have searched for pair-produced charged Higgs bosons in the framework of Two Higgs Doublet Models (2HDMs). The data of the four experiments have been statistically combined. The results are interpreted within the 2HDM for Type I and Type II benchmark scenarios. No statistically significant excess has been observed when compared to the Standard Model background prediction, and the combined LEP data exclude large regions of the model parameter space. Charged Higgs bosons with mass below 80  ${\rm GeV}/c^{2}$ (Type II scenario) or 72.5 ${\rm GeV}/c^{2}$ (Type I scenario, for pseudo-scalar masses above 12 ${\rm GeV}/c^{2}$ ) are excluded at the 95 % confidence level.  相似文献   

4.
We discuss the formalism of the two Higgs doublet model of type III with CP violation from CP-even CP-odd mixing in the neutral Higgs bosons. The flavor-changing interactions among neutral Higgs bosons and fermions are presented at tree level in this type of model. These assumptions allow the study of rare top decays mediated by a neutral Higgs boson; particularly we are interested in $t\rightarrow c l^+l^-$ . For this process we estimate the upper bounds of the branching ratios $\mathrm{Br }(t\rightarrow c \tau ^+\tau ^-)$ of the order of $10^{-9}\sim 10^{-7}$ for a neutral Higgs boson mass equal to 125 GeV and $\tan \beta =1$ , 1.5, 2, 2.5. For the case of $t\rightarrow c \tau ^+\tau ^-$ the number of possible events is estimated to range from 1 to 10 events, which could be observed in future experiments at LHC with a luminosity of 300  $\hbox {fb}^{-1}$ and 14 TeV for the energy of the center of mass. Also we estimate that the number of events for the process $t\rightarrow c l^+l^-$ in different scenarios is of the order of 2,500.  相似文献   

5.
We report on the p T dependence of nuclear modification factors (R CP) for K S 0 , ??, ?? and the $\bar NK_S^0 $ ratios at mid-rapidity from Au+Au collisions at $\sqrt {s_{NN} } $ = 39, 11.5 and 7.7 GeV. At $\sqrt {s_{NN} } $ = 39 GeV, the R CP data show a baryon/meson separation at intermediate p T and a suppression for K S 0 for p T up to 4.5 GeV/c; the $\bar \Lambda K_S^0 $ shows baryon enhancement in the most central collisions. However, at $\sqrt {s_{NN} } $ = 11.5 and 7.7 GeV, R CP shows less baryon/meson separation and $\bar NK_S^0 $ shows almost no baryon enhancement. These observations indicate that the matter created in Au+Au collisions at $\sqrt {s_{NN} } $ = 11.5 or 7.7 GeV might be distinct from that created at $\sqrt {s_{NN} } $ = 39 GeV.  相似文献   

6.
In scenarios of strongly coupled electroweak symmetry breaking, heavy composite particles of different spin and parity may arise and cause observable effects on signals that appear at loop levels. The recently observed process of Higgs to $\gamma \gamma $ at the LHC is one of such signals. We study the new constraints that are imposed on composite models from $H\rightarrow \gamma \gamma $ , together with the existing constraints from the high precision electroweak tests. We use an effective chiral Lagrangian to describe the effective theory that contains the Standard Model spectrum and the extra composites below the electroweak scale. Considering the effective theory cutoff at $\Lambda = 4\pi v \sim 3\text { TeV}$ , consistency with the $T$ and $S$ parameters and the newly observed $H\rightarrow \gamma \gamma $ can be found for a rather restricted range of masses of vector and axial-vector composites from 1.5 to 1.7 and 1.8 to 1.9 TeV, respectively, and only provided a non-standard kinetic mixing between the $W^{3}$ and $B^{0}$ fields is included.  相似文献   

7.
The unbound excited states of the most neutron-rich dripline oxygen isotope, 24O, have been investigated by using the 24O(p,p′)24O* reaction at the beam energy of 62 MeV/nucleon in inverse kinematics. The first and second unbound excited states of 24O have been observed at ${E_{\rm x}= 4.63_{-0.14}^{+0.30}}$  MeV and ${E_{\rm x}= 5.13_{-0.24}^{+0.19}}$  MeV (preliminary) along with the evidence for another higher lying state at around 7.3 MeV. The quadrupole deformation parameter ${\beta_{2^+}}$ was deduced to be ${0.15_{-0.03}^{+0.08}}$ (preliminary) for the first time. The systematics of the ${\beta_{2^+}}$ and the ${E_{\rm x}(2_1^+)}$ in the Z = 8 isotopes shows the N = 16 spherical shell closure in 24O.  相似文献   

8.
$(\mathrm{In}_{1-x}\mathrm{Fe}_{x})_{2}\mathrm{O}_{3}$ $(x=0.07, 0.09, 0.16, 0.22, 0.31)$ films were deposited on Si (100) substrates by RF-magnetron sputtering technique. The influence of Fe doping on the local structure of films was investigated by X-ray absorption spectroscopy (XAS) at Fe K-edge and L-edge. For the $(\mathrm{In}_{1-x}\mathrm{Fe}_{x})_{2}\mathrm{O}_{3}$ films with $x=0.07, 0.09 \mbox{ and } 0.16$ , Fe ions dissolve into $\mathrm{In}_{2}\mathrm{O}_{3}$ and substitute for $\mathrm{In}^{3+}$ sites with a mixed-valence state ( $\mathrm{Fe}^{2+}/\mathrm{Fe}^{3+}$ ) of Fe ions. However, a secondary phase of Fe metal clusters is formed in the $(\mathrm{In}_{1-x}\mathrm{Fe}_{x})_{2}\mathrm{O}_{3}$ films with $x=0.22 \mbox{ and } 0.31$ . The qualitative analyses of Fe-K edge extended X-ray absorption fine structure (EXAFS) reveal that the Fe–O bond length shortens and the corresponding Debye–Waller factor ( $\sigma^{2}$ ) increases with the increase of Fe concentration, indicating the relaxation of oxygen environment of Fe ions upon substitution. The anomalously large structural disorder and very short Fe–O distance are also observed in the films with high Fe concentration. Linear combination fittings at Fe L-edge further confirm the coexistence of $\mathrm{Fe}^{2+}$ and $\mathrm{Fe}^{3+}$ with a ratio of ${\sim}3:2$ ( $\mathrm{Fe}^{2+}: \mathrm{Fe}^{3+}$ ) for the $(\mathrm{In}_{1-x}\mathrm{Fe}_{x})_{2}\mathrm{O}_{3}$ film with $x=0.16$ . However, a significant fraction ( ${\sim}40~\mbox{at\%}$ ) of the Fe metal clusters is found in the $(\mathrm{In}_{1-x}\mathrm{Fe}_{x})_{2}\mathrm{O}_{3}$ film with $x=0.31$ .  相似文献   

9.
We analyze longitudinal pion spectra from $\ensuremath \sqrt{s_{NN}}=2$ GeV to $\ensuremath \sqrt{s_{NN}}=20$ GeV within Landau??s hydrodynamical model and the UrQMD hybrid approach. From the measured data on the widths of the pion rapidity spectra, we extract the sound velocity c s 2 in the dense stage of the reactions. It is found that the sound velocity has a local minimum (indicating the softest point in the equation of state, EoS) at $\ensuremath \sqrt{s_{NN}}=4\mbox{--}9$ GeV, an energy range accessible at the Facility for Antiproton and Ion Research (FAIR) as well as the RHIC-Beam Energy Scan (RHIC-BES). This softening of the EoS is compatible with the formation of a QGP at the onset of deconfinement. The extracted sound velocities are then used to calculate an excitation function for the mean transverse mass of pions from the hybrid model. We find that, above $\ensuremath \sqrt{s_{NN}} \approx 10$ GeV, even the lowest c s 2 gives a considerably larger $\ensuremath \langle m_T\rangle$ of pions compared to data.  相似文献   

10.
We confront the discovery of a boson decaying into two photons, as reported recently by ATLAS and CMS, with the corresponding predictions in the Minimal Supersymmetric Standard Model (MSSM) and the Next-to-Minimal Supersymmetric Standard Model (NMSSM). We perform a scan over the relevant regions of parameter space in both models and evaluate the MSSM and NMSSM predictions for the dominant Higgs production channel and the photon–photon decay channel. Taking into account the experimental constraints from previous direct searches, flavor physics, electroweak measurements as well as theoretical considerations, we find that a Higgs signal in the two photon channel with a rate equal to, or above, the SM prediction is viable over the full mass range 123?M H ?127 GeV, both in the MSSM and the NMSSM. We find that besides the interpretation of a possible signal at about 125 GeV in terms of the lightest $\mathcal {CP}$ -even Higgs boson, both the MSSM and the NMSSM permit also a viable interpretation where an observed state at about 125 GeV would correspond to the second-lightest $\mathcal {CP}$ -even Higgs boson in the spectrum, which would be accompanied by another light Higgs with suppressed couplings to W and Z bosons. We find that a significant enhancement of the γγ rate, compatible with the signal strengths observed by ATLAS and CMS, is possible in both the MSSM and the NMSSM, and we analyse in detail different mechanisms in the two models that can give rise to such an enhancement. We briefly discuss also our predictions in the two models for the production and subsequent decay into two photons of a $\mathcal {CP}$ -odd Higgs boson.  相似文献   

11.
The principle of maximum conformality (PMC) has been suggested to eliminate the renormalization scheme and renormalization scale uncertainties, which are unavoidable for the conventional scale setting and are usually important errors for theoretical estimations. In this paper, by applying PMC scale setting, we analyze two important inclusive Standard Model Higgs decay channels, $H\rightarrow b\bar{b}$ and $H\rightarrow gg$ , up to four-loop and three-loop levels, respectively. After PMC scale setting, it is found that the conventional scale uncertainty for these two channels can be eliminated to a high degree. There is small residual initial scale dependence for the Higgs decay widths due to unknown higher-order $\{\beta _i\}$ terms. Up to four-loop level, we obtain $\Gamma (H\rightarrow b\bar{b}) = 2.389\pm 0.073 \pm 0.041$ MeV and up to three-loop level, we obtain $\Gamma (H\rightarrow gg) = 0.373\pm 0.030$ MeV, where the first error is caused by varying $M_H=126\pm 4$ GeV and the second error for $H\rightarrow b\bar{b}$ is caused by varying the $\overline{\mathrm{MS}}$ -running mass $m_b(m_b)=4.18\pm 0.03$ GeV. Taking $H\rightarrow b\bar{b}$ as an example, we present a comparison of three BLM-based scale-setting approaches, e.g. the PMC-I approach based on the PMC–BLM correspondence, the $R_\delta $ -scheme and the seBLM approach, all of which are designed to provide effective ways to identify non-conformal $\{\beta _i\}$ -series at each perturbative order. At four-loop level, all those approaches lead to good pQCD convergence, they have almost the same pQCD series, and their predictions are almost independent on the initial renormalization scale. In this sense, those approaches are equivalent to each other.  相似文献   

12.
The present work is aimed to compare the physical properties of $\mbox{Sn}_{1-x} \mbox{Fe}_x \mbox{O}_{2-\delta } $ (x?=?0, and 0.05) nanopowders obtained by sol–gel method, mechanochemical alloying, and mechanochemical alloying followed by thermal treatment. The X-ray diffraction of $\mbox{Sn}_{1-x} \mbox{Fe}_x \mbox{O}_{2-\delta } $ samples prepared by sol–gel showed peaks due to the cassiterite phase of SnO2 and thier Mössbauer spectra showed ferromagnetic and paramagnetic signals. The samples obtained by the milling process of SnO2 mixed with $\upalpha $ -Fe showed Bragg peaks due to SnO2 (rutile) with a line broadening caused by the reduction of grain sizes and the presence of microstrains. Mössbauer spectra for these samples revealed the presence of Fe3?+? as well as unreacted $\upalpha $ -Fe. In the case of mechanochemical alloying with thermal treatment, the incorporation of Fe3?+? in the SnO2 structure with the presence of impurities was observed.  相似文献   

13.
Let ${Y_{m|n}^{\ell}}$ be the super Yangian of general linear Lie superalgebra for ${\mathfrak{gl}_{m|n}}$ . Let ${e \in \mathfrak{gl}_{m\ell|n\ell}}$ be a “rectangular” nilpotent element and ${\mathcal{W}_e}$ be the finite W-superalgebra associated to e. We show that ${Y_{m|n}^{\ell}}$ is isomorphic to ${\mathcal{W}_e}$ .  相似文献   

14.
We review and update our results for $K\rightarrow \pi \pi $ decays and $K^0$ $\bar{K}^0$ mixing obtained by us in the 1980s within an analytic approximate approach based on the dual representation of QCD as a theory of weakly interacting mesons for large $N$ , where $N$ is the number of colors. In our analytic approach the Standard Model dynamics behind the enhancement of $\hbox {Re}A_0$ and suppression of $\hbox {Re}A_2$ , the so-called $\Delta I=1/2$ rule for $K\rightarrow \pi \pi $ decays, has a simple structure: the usual octet enhancement through the long but slow quark–gluon renormalization group evolution down to the scales $\mathcal{O}(1\, {\hbox { GeV}})$ is continued as a short but fast meson evolution down to zero momentum scales at which the factorization of hadronic matrix elements is at work. The inclusion of lowest-lying vector meson contributions in addition to the pseudoscalar ones and of Wilson coefficients in a momentum scheme improves significantly the matching between quark–gluon and meson evolutions. In particular, the anomalous dimension matrix governing the meson evolution exhibits the structure of the known anomalous dimension matrix in the quark–gluon evolution. While this physical picture did not yet emerge from lattice simulations, the recent results on $\hbox {Re}A_2$ and $\hbox {Re}A_0$ from the RBC-UKQCD collaboration give support for its correctness. In particular, the signs of the two main contractions found numerically by these authors follow uniquely from our analytic approach. Though the current–current operators dominate the $\Delta I=1/2$ rule, working with matching scales $\mathcal{O}(1 \, {\hbox { GeV}})$ we find that the presence of QCD-penguin operator $Q_6$ is required to obtain satisfactory result for $\hbox {Re}A_0$ . At NLO in $1/N$ we obtain $R=\hbox {Re}A_0/\hbox {Re}A_2= 16.0\pm 1.5$ which amounts to an order of magnitude enhancement over the strict large $N$ limit value $\sqrt{2}$ . We also update our results for the parameter $\hat{B}_K$ , finding $\hat{B}_K=0.73\pm 0.02$ . The smallness of $1/N$ corrections to the large $N$ value $\hat{B}_K=3/4$ results within our approach from an approximate cancelation between pseudoscalar and vector meson one-loop contributions. We also summarize the status of $\Delta M_K$ in this approach.  相似文献   

15.
We survey recent progress in the theoretical study of vibrational transitions in the antiprotonic helium atom. Along with the latest experiment they allow to achieve a competitive accuracy in determination of the atomic mass of an electron and thus they have been included into the CODATA06 analysis of the fundamental constants. Improved theoretical calculation of the hyperfine structure in $^{4\!}\mbox{He}\bar{p}\/$ atom will be considered as well. We will discuss contributions of order $R_\infty\alpha^4$ to the electron spin-orbit interaction. These corrections are necessary to confirm the latest measurements of the 12.9 MHz intervals of the (n,l)?=?(37,35) state in $^4\mbox{He}^+\bar{p}$ and for precise determination of the antiproton magnetic moment.  相似文献   

16.
We present numerical calculations of the production cross section of a heavy Z?? resonance in hadron?Chadron collisions with subsequent decay into top?Cantitop pairs. In particular, we consider the leptophobic topcolor Z?? discussed under Model IV of hep-ph/9911288, which has predicted cross sections large enough to be experimentally accessible at the Fermilab Tevatron and the Large Hadron Collider at CERN. This article presents an updated calculation valid for the Tevatron and all proposed LHC collision energies. Cross sections are presented for various Z?? widths, in $p\bar{p}$ collisions at $\sqrt{s}=2\mbox{~TeV}$ , and in pp collisions at $\sqrt{s}=7, 8, 10 \mbox{ and } 14\mbox{~TeV}$ .  相似文献   

17.
In order to improve the glass-forming ability (GFA) of Nd–Fe–B ternary alloys to obtain fully amorphous bulk Nd–Fe–B-based alloy, the effects of Mo and Y doping on GFA of the alloys were investigated. It was found that the substitution of Mo for Fe and Y for Nd enhanced the GFA of the Nd–Y–Fe–Mo–B alloys. It was also revealed that the GFA of the samples was optimized by 4 at.% Mo doping and increased with the Y content. The fully amorphous structures were all formed in the Nd $_{6-{x}}$ Y $_{{x}}$ Fe $_{68}$ Mo $_{4}$ B $_{22}$ (x $=$ 1–5) alloy rods with 1.5 mm-diameter. After subsequent crystallization, the devitrified Nd $_{3}$ Y $_{3}$ Fe $_{68}$ Mo $_{4}$ B $_{22}$ alloy rod exhibited a uniform distribution of grains with a coercivity of 364.1 kA/m. The crystallization behavior of Nd $_{3}$ Y $_{3}$ Fe $_{68}$ Mo $_{4}$ B $_{22}$ BMG was investigated in isothermal situation. The Avrami exponent n determined by JAM plot is lower than 2.5, implying that the crystallization is mainly governed by a growth of particles with decreasing nucleation rate.  相似文献   

18.
The primary goal of KamLAND is a search for the oscillation of \({\bar{\nu }}_\mathrm{e}\) ’s emitted from distant power reactors. The long baseline, typically 180 km, enables KamLAND to address the oscillation solution of the “solar neutrino problem” with \({\bar{\nu }}_{e} \) ’s under laboratory conditions. KamLAND found fewer reactor \({\bar{\nu }}_{e} \) events than expected from standard assumptions about \(\overline{\nu }_e\) propagation at more than 9 \(\sigma \) confidence level (C.L.). The observed energy spectrum disagrees with the expected spectral shape at more than 5 \(\sigma \) C.L., and prefers the distortion from neutrino oscillation effects. A three-flavor oscillation analysis of the data from KamLAND and KamLAND + solar neutrino experiments with CPT invariance, yields \(\Delta m_{21}^2 \) = [ \(7.54_{-0.18}^{+0.19} \times \) 10 \(^{-5}\) eV \(^{2}\) , \(7.53_{-0.18}^{+0.19} \times \) 10 \(^{-5}\) eV \(^{2}\) ], tan \(^{2}\theta _{12}\) = [ \(0.481_{-0.080}^{+0.092} \) , \(0.437_{-0.026}^{+0.029} \) ], and sin \(^{2}\theta _{13}\) = [ \(0.010_{-0.034}^{+0.033} \) , \(0.023_{-0.015}^{+0.015} \) ]. All solutions to the solar neutrino problem except for the large mixing angle region are excluded. KamLAND also demonstrated almost two cycles of the periodic feature expected from neutrino oscillation effects. KamLAND performed the first experimental study of antineutrinos from the Earth’s interior so-called geoneutrinos (geo \({\bar{\nu }}_{e} \) ’s), and succeeded in detecting geo \({\bar{\nu }}_{e} \) ’s produced by the decays of \(^{238}\) U and \(^{232}\) Th within the Earth. Assuming a chondritic Th/U mass ratio, we obtain \(116_{-27}^{+28} {\bar{\nu }}_{e}\) events from \(^{238}\) U and \(^{232}\) Th, corresponding a geo \({\bar{\nu }}_{e}\) flux of \(3.4_{-0.8}^{+0.8}\times \) 10 \(^{6}\) cm \(^{-2}\)  s \(^{-1}\) at the KamLAND location. We evaluate various bulk silicate Earth composition models using the observed geo \({\bar{\nu }}_{e} \) rate.  相似文献   

19.
It is suggested that the Higgs boson may have a branching ratio into the $c\bar{c}$ mode suppressed by several orders of magnitude compared with conventional predictions and in addition some small but detectable flavour-violating modes such as $b\bar{s}$ and $\tau \bar{\mu}$ . The suggestion is based on a scheme proposed and tested earlier for explaining the mixing pattern and mass hierarchy of fermions in terms of a rotating mass matrix. If confirmed, the effects would cast new light on the geometric origin of fermion generations and of the Higgs field itself.  相似文献   

20.
New materials based on the composition of the mineral schafarzikite, FeSb $_{2}\textit {O}_{4}$ , have been synthesised. $^{57}$ Fe- and $^{121}$ Sb- Mössbauer spectroscopy shows that iron is present as Fe $^{2+}$ and that antimony is present as Sb $^{3+}$ . The presence of Pb $^{2+}$ on the antimony sites in materials of composition FeSb $_{1.5}$ Pb $_{0.5}\textit {O}_{4}$ induces partial oxidation of Fe $^{2+}_{}$ to Fe $^{3+}$ . The quasi-one-dimensional magnetic structure of schafarzikite is retained in FeSb $_{1.5}$ Pb $_{0.5}\textit {O}_{4}$ and gives rise to weakly coupled non-magnetic Fe $^{2+}$ ions coexisting with Fe $^{3+}$ ions in a magnetically ordered state. A similar model can be applied to account for the spectra recorded from the compound Co $_{0.5}$ Fe $_{0.5}$ Sb $_{1.5}$ Pb $_{0.5}\textit {O}_{4}$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号