首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrothermal reactions of the lanthanide chlorides with MeN(CH2CO2H)(CH2PO3H2), (H3L1) (or Me2NCH2PO3H2, H2L2) and sodium oxalate lead to seven new lanthanide oxalate phosphonate hybrids with three types of 3D network structures, namely, [Ln(C2O4){MeNH(CH2CO2)(CH2PO3H)}]0.5 H2O (Ln=Nd: 1; Eu: 2; Gd: 3), [Ln4(C2O4)5(Me2NHCH2PO3)2(H2O)4]2 H2O (Ln=La: 4, Nd: 5), [Ln3(C2O4)4(Me2NHCH2PO3)(H2O)6]6 H2O (Gd: 6, Er: 7). Their structures have been established by X-ray single-crystal diffraction. Complexes 1-3 are isostructural and feature a 3D network formed by the interconnection of 3D network of {Ln(H2L1)}2+ with 1D chains of {Ln(C2O4)}+. Complexes 4 and 5 are isostructural and feature a complex 3D network built from 3D network of lanthanide oxalate and {Ln4(HL2)2} units. The isostructural 6 and 7 form another type of 3D network composed of porous lanthanide-oxalate network inserted by 1D chains of lanthanide-oxalate phosphonate. Compounds 1, 5 and 7 are luminescent materials in the near IR region. Compounds 3 and 6 exhibit a broad blue fluorescent emission band at 451 and 467 nm, respectively. Compound 2 displays very strong and sharp emission bands at 592, 616 and 699 nm with a long luminescent lifetime of 1.13 ms.  相似文献   

2.
The syntheses, structures, and magnetic properties are reported for four new lanthanide clusters [Sm(4)(μ(3)-OH)(2)L(2)(acac)(6)]·4H(2)O (1), [Gd(4)(μ(3)-OH)(2)L(2)(acac)(6)]·4CH(3)CN (2), and [Ln(4)(μ(3)-OH)(2)L(2)(acac)(6)]·2H(2)L·2CH(3)CN (3, Ln = Tb; 4, Ln = Dy) supported by salen-type (H(2)L = N,N'-bis(salicylidene)-1,2-cyclohexanediamine) and β-diketonate (acac = acetylacetonate) ligands. The four clusters were confirmed to be essentially isomorphous by infrared spectroscopy and single-crystal X-ray diffraction. Their crystal structures reveal that the salen-type ligand provides a suitable tetradentate coordination pocket (N(2)O(2)) to encapsulate lanthanide(III) ions. Moreover, the planar Ln(4) core is bridged by two μ(3)-hydroxide, four phenoxide, and two ketonate oxygen atoms. Magnetic properties of all four compounds have been investigated using dc and ac susceptibility measurements. For 4, the static and dynamic data indicate that the Dy(4) complex exhibits slow relaxation of the magnetization below 5 K associated with single-molecule magnet behavior.  相似文献   

3.
The first examples of lanthanide(III) organoarsonates, Ln(L(1))(H(2)O)(3) (Ln = La (1), H(3)L(1) = 4-hydroxy-3-nitrophenylarsonic acid), Ln(L(1))(H(2)O)(2) (Ln = Nd (2), Gd (3)), and mixed-ligand lanthanide(III) organoarsonates, Ln(2)(HL(1))(2)(C(2)O(4))(H(2)O)(2) (Ln = Nd (4), Sm (5), Eu (6)), were hydrothermally synthesized and structurally characterized. Compounds 1-3 feature a corrugated lanthanide arsonate layer, in which 1D lanthanide arsonate inorganic chains are further interconnected via bridging L(1)(3-) ligands. Compounds 4-6 exhibit a complicated 3D network. The interconnection of the lanthanide(III) ions by the bridging arsonate ligand leads to the formation of a novel 3D framework with long narrow 1D tunnels along the a-axis, with the oxalate anions are located at the above tunnels and bridging with lanthanide(III) ions. Compounds 2 and 4 exhibit the characteristic emission bands of the Nd(III) ion, whereas compound 6 displays the characteristic emission bands of the Eu(III) ion. The magnetic properties of compounds 3-6 were also investigated.  相似文献   

4.
To tune the lanthanide luminescence in related molecular structures, we synthesized and characterized a series of lanthanide complexes with imidazole-based ligands: two tripodal ligands, tris{[2-{(1-methylimidazol-2-yl)methylidene}amino]ethyl}amine (Me(3)L), and tris{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(3)L), and the dipodal ligand bis{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(2)L). The general formulas are [Ln(Me(3)L)(H(2)O)(2)](NO(3))(3)·3H(2)O (Ln = 3+ lanthanide ion: Sm (1), Eu (2), Gd (3), Tb (4), and Dy (5)), [Ln(H(3)L)(NO(3))](NO(3))(2)·MeOH (Ln(3+) = Sm (6), Eu (7), Gd (8), Tb (9), and Dy (10)), and [Ln(H(2)L)(NO(3))(2)(MeOH)](NO(3))·MeOH (Ln(3+) = Sm (11), Eu (12), Gd (13), Tb (14), and Dy (15)). Each lanthanide ion is 9-coordinate in the complexes with the Me(3)L and H(3)L ligands and 10-coordinate in the complexes with the H(2)L ligand, in which counter anion and solvent molecules are also coordinated. The complexes show a screw arrangement of ligands around the lanthanide ions, and their enantiomorphs form racemate crystals. Luminescence studies have been carried out on the solid and solution-state samples. The triplet energy levels of Me(3)L, H(3)L, and H(2)L are 21?000, 22?700, and 23?000 cm(-1), respectively, which were determined from the phosphorescence spectra of their Gd(3+) complexes. The Me(3)L ligand is an effective sensitizer for Sm(3+) and Eu(3+) ions. Efficient luminescence of Sm(3+), Eu(3+), Tb(3+), and Dy(3+) ions was observed in complexes with the H(3)L and H(2)L ligands. Ligand modification by changing imidazole groups alters their triplet energy, and results in different sensitizing ability towards lanthanide ions.  相似文献   

5.
Two new flexible exo-bidentate ligands were designed and synthesized, incorporating different backbone chain lengths bearing two salicylamide arms, namely 2,2'-(2,2'-oxybis(ethane-2,1-diyl)bis(oxy))bis(N-benzylbenzamide) (L(I)) and 2,2'-(2,2'-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(oxy)bis(N-benzylbenzamide) (L(II)). These two structurally related ligands are used as building blocks for constructing diverse lanthanide polymers with luminescent properties. Among two series of lanthanide nitrate complexes which have been characterized by elemental analysis, TGA analysis, X-ray powder diffraction, and IR spectroscopy, ten new coordination polymers have been determined using X-ray diffraction analysis. All the coordination polymers exhibit the same metal-to-ligand molar ratio of 2?:?3. L(I), as a bridging ligand, reacts with lanthanide nitrates forming two different types of 2D coordination complexes: herringbone framework {[Ln(2)(NO(3))(6)(L(I))(3)·mC(4)H(8)O(2)](∞) (Ln = La (1), and Pr (2), m = 1, 2)} as type I,; and honeycomb framework {[Ln(2)(NO(3))(6)(L(I))(3)·nCH(3)OH](∞) (Ln = Nd (3), Eu (4), Tb (5), and Er (6), n = 0 or 3)} as type II, which change according to the decrease in radius of the lanthanide. For L(II), two distinct structure types of 1D ladder-like coordination complexes were formed with decreasing lanthanide radii: [Ln(2)(NO(3))(6)(L(II))(3)·2C(4)H(8)O(2)](∞) (Ln = La (7), Pr (8), Nd (9)) as type III, [Ln(2)(NO(3))(6)(L(I))(3)·mC(4)H(8)O(2)·nCH(3)OH](∞) (Ln = Eu (10), Tb (11), and Er (12), m, n = 2 or 0) as type IV. The progressive structural variation from the 2D supramolecular framework to 1D ladder-like frameworks is attributed to the varying chain length of the backbone group in the flexible ligands. The photophysical properties of trivalent Sm, Eu, Tb, and Dy complexes at room temperature were also investigated in detail.  相似文献   

6.
Heteropolynuclear organometallic compounds have been constructed by using two kinds of ferrocene-based ligands, 1,1'-ferrocenedicarboxylic acid (H(2)L(1)) and ferrocenecarboxylic acid (HL(2)). Reactions the ligand H(2)L(1) with copper(II) and nickel(II) salts, in the presence of pyridine, give a tetranuclear Cu(2)Fe(2) mixed-metallic box Cu(2)L(1)(2)(Py)(2)(DMF)(2)(H(2)O)(2) (1) and a tetranuclear heterobimetallic helix Ni(2)L(1)(2)(Py)(4)(H(2)O) (2), respectively. In these complexes, the ferrocene moieties show cisoid conformations which lead to the formation of the finite coordination geometry, i.e. to molecular complexes. Interactions of the ligand H(2)L(1) with lanthanide ions afford two-dimensional networks [La(2)L(1)(3)(CH(3)OH)(4)]( infinity ) (3), [Eu(2)L(1)(3)(H(2)O)(5)]( infinity ) (4), and [Gd(2)L(1)(3)(CH(3)OH)(2)(H(2)O)(3)]( infinity ) (5), respectively, in which transoid conformations of the ferrocene moiety provide opportunities to form infinite 2-D networks. It is suggested that the conformational freedom of the ferrocene moiety makes the ligand L(1) display different conformations and coordination modes in these complexes. In addition, the pi.pi interactions related to the ferrocene moieties were also found to stabilize the supramolecular architectures in the solid state. As a comparison, reaction of lanthanide ions with the ligand HL(2) resulted in three isostructural heterodinuclear windmill-shaped compounds Ln(2)L(2)(6)(CH(3)OH)(2)(H(2)O)(5) [Ln = La (6), Eu (7), and Gd (8)] by simply diffusing the solutions of lanthanide ions into the mixture of HL(2) and NaOH, respectively. Electrochemical properties of the ferrocene-containing complexes 1-8 are also investigated in the solution or solid state.  相似文献   

7.
Du ZY  Xu HB  Mao JG 《Inorganic chemistry》2006,45(24):9780-9788
Hydrothermal reactions of lanthanide(III) salts with m-sulfophenylphosphonic acid (H3L1) and 1,10-phenanthroline (phen) or N,N'-piperazinebis(methylenephosphonic acid) (H4L2) afforded six novel lanthanide(III) sulfonate-phosphonates based on tetranuclear clusters, namely, [La(2)(L1)2(phen)4(H2O)].4.5H2O (1), [Ln2(L1)2(phen)2(H2O)5].3H2O (Ln = Nd, 2; Eu, 3; Er, 4), and [Ln2(HL1)(H2L2)2(H2O)4].8H2O (Ln = La, 5; Nd, 6). Compounds 2-4 contain discrete tetranuclear lanthanide(III) cluster units in which four lanthanide(III) ions are bridged by two tridentate and two tetradentate phosphonate groups. In compound 1, the tetranuclear clusters are further interconnected into a 1D chain through the coordination of the sulfonate groups. The structures of compounds 5 and 6 can be viewed as a 3D architecture based on a different types of tetranuclear cluster units that are interconnected by bridging H2L2 anions. In the tetranuclear clusters of compounds 5 and 6, the four lanthanide(III) centers are interconnected by only two HL1 ligands. Compound 2 is a luminescent material in the near-IR region, whereas compound 3 displays a strong luminescent emission band in the red-light region. Magnetic property measurements of compounds 2-4 and 6 indicate that there are strong antiferromagetic interactions between magnetic centers within the cluster units.  相似文献   

8.
Song X  Zhou X  Liu W  Dou W  Ma J  Tang X  Zheng J 《Inorganic chemistry》2008,47(24):11501-11513
To explore the relationships between the structures of ligands and their complexes, we have synthesized and characterized a series of lanthanide complexes with two structurally related ligands, 1,1,1,1-tetrakis{[(2'-(2-benzylaminoformyl))phenoxyl]methyl}methane (L(I)) and 1,1,1,1-tetrakis{[(2'-(2-picolyaminoformyl))phenoxyl]methyl}methane (L(II)). A series of zero- to three-dimensional lanthanide coordination complexes have been obtained by changing the substituents on the Pentaerythritol. Our results revealed that, complexes of the L(I) ligand, {Ln(4)L(I)(3)(NO(3))(12).nC(4)H(10)O}(infinity) (Ln = Nd, Eu, Tb, Er, n = 3 or 6)] show the binodal 3,4-connected three-dimensional interpenetration coordination polymers with topology of a (8(3))(4)(8(6))(3) notation. Compared to L(I), complexes of L(II) present a cage-like homodinuclear [Ln(2)L(II)(2)(NO(3))(6).2H(2)O].nH(2)O (Ln = Nd, Tb, Dy, n = 0 or 1) or a helical one-dimensional coordination {[ErL(II)(NO(3))(3).H(2)O].H(2)O}(infinity) polymer. The luminescence properties of the resulting complexes formed with ions used in fluoroimmunoassays (Ln = Eu, Tb) are also studied in detail. It is noteworthy that subtle variation of the terminal group from benzene to pyridine not only sensibly affects the overall molecular structures but also the luminescence properties as well.  相似文献   

9.
Han F  Teng Q  Zhang Y  Wang Y  Shen Q 《Inorganic chemistry》2011,50(6):2634-2643
The monoamido lanthanide complexes stabilized by Schiff base ligand L(2)LnN(TMS)(2) (L = 3,5-Bu(t)(2)-2-(O)-C(6)H(2)CH═N-8-C(9)H(6)N, Ln = Yb (1), Y (2), Eu (3), Nd (4), and La (5)) were synthesized in good yields by the reactions of Ln[N(TMS)(2)](3) with 1.8 equiv of HL in hexane at room temperature. It was found that the stability of 1-5 depends greatly on the size of the lanthanide metals with the increasing trend of Yb ≈ Y < Nd < La. The amine elimination of Ln[N(TMS)(2)](3) with the bulky bidentate Schiff base HL' (L' = 3,5-Bu(t)(2)-2-(O)-C(6)H(2)CH═N-2,6-Pr(i)(2)-C(6)H(3)) afforded the monoamido lanthanide complexes L'(2)LnN(TMS)(2) (Ln = Yb (9), Y (10), Nd (11), and La (12)). While the amine elimination with the less bulky Schiff base HL' (L' = 3,5-Bu(t)(2)-2-(O)-C(6)H(2)CH═N-2,6-Me(2)-C(6)H(3)) yielded the desired monoamido complexes with the small metals of Y and Yb, L'(2)LnN(TMS)(2) (Ln = Yb (13) and Y (14)), and the more stable tris-Schiff base complexes with the large metals of La and Nd, yielded L'(3)Ln as the only product. Complexes 1-14 were fully characterized including X-ray crystal structural analysis. Complexes 1-5, 10, and 14 can serve as the efficient catalysts for addition of amines to carbodiimides, and the catalytic activity is greatly affected by the lanthanide metals with the active sequence of Yb < Y < Eu ≈ Nd ≈ La.  相似文献   

10.
A new bis-β-diketone, 3,3'-bis(4,4,4-trifluoro-1,3-dioxobutyl)biphenyl (BTB), has been designed and prepared for the synthesis of a series of dinuclear lanthanide complexes [Ln(2)(BTB)(3)(C(2)H(5)OH)(2)(H(2)O)(2)] [Ln = Eu (1), Gd (2)], [Ln(2)(BTB)(3)(DME)(2)] [Ln = Nd (3), Yb (4); DME = ethylene glycol dimethyl ether] and [Eu(2)(BTB)(3)(L)(2)] [L = 2,2-bipydine (5); 1,10-phenanthroline (6); 4,7-diphenyl-1,10-phenanthroline (7)]. Complexes 1-7 have been characterized by various spectroscopic techniques and their photophysical properties are investigated. X-ray crystallographical analysis reveals that complexes 1, 3 and 4 adopt triple-stranded dinuclear structures which are formed by three bis-bidentate ligands with two lanthanide ions. The complexes 1 and 3-7 display strong visible red or NIR luminescence upon irradiation at ligand band around 372 nm, depending on the choice of the lanthanide. The solid-state photoluminescence quantum yields and the lifetimes of Eu(3+) complexes are determined and described.  相似文献   

11.
A series of cationic lanthanide porphyrinate complexes of the general formula [(Por)Ln(H(2)O)(3)](+) (Ln(3+)=Yb(3+) and Er(3+)) were synthesized in moderate yields through the interaction of meso-pyridyl-substituted porphyrin free bases (H(2)Por) with [Ln{N(SiMe(3))(2)}(3)]·x[LiCl(thf)(3)], and the corresponding neutral derivatives [(Por)Ln(L(OMe))] (L(OMe)(-)=[(η(5)-C(5)H(5))Co{P(=O)(OMe)(2)}(3)](-)) were also prepared from [(Por)Ln(H(2)O)(3)](+) by the addition of the tripodal anion, L(OMe)(-), an effective encapsulating agent for lanthanide ions. Furthermore, the water-soluble lanthanide(III) porphyrinate complexes--including [(cis-DMPyDPP)Yb(H(2)O)(3)]Cl(3) (cis-DMPyDPP=5,10-bis(N-methylpyridinium-4'-y1)-15,20-di(phenyl)porphyrin), [(trans-DMPyDPP)Yb(H(2)O)(3)]Cl(3) (trans-DMPyDPP=5,15-bis(N-methylpyridinium-4'-y1)-10,20-di(phenyl)porphyrin), [(TMPyP)Yb(L(OMe))]I(4), and [(TMPyP)Er(L(OMe))]I(4) (TMPyP=tetrakis(N-methylpyridinium-4-y1)porphyrin)--were obtained by methylation of the corresponding complexes with methyl iodide and unambiguously characterized. The binding interactions and photocleavage activities of the water-soluble lanthanide(III) porphyrinate complexes towards DNA were investigated by UV-visible, fluorescence, and near-infrared luminescence spectroscopy, as well as circular dichroism and gel electrophoresis.  相似文献   

12.
The polymeric lanthanide complexes (Ln(mu-CH3OC6H5C4O3)(CH3OC6H5C4O3)2 (H2O)4.xH2O)n [Ln=La (1), Eu (2), Gd (3)], formed from the reaction of aqueous solutions of anisolesquarate and Ln(NO3)3.xH2O, are all structurally similar with only subtle differences between the lanthanum complex and the isomorphous pair of europium and gadolinium analogues. The lanthanum atom in 1 has a square antiprismatic coordination geometry comprising two pendant and two mu-1,3-bridging anisolesquarate groups and four aqua ligands. Complexes 2 and 3 have two independent metal atoms in their asymmetric units compared to one for the lanthanum complex. However, the gross structures of 1-3 are essentially the same. The asymmetric unit of the terbium complex ((CH3OC6H5C4O3)3Tb(H2O)4(mu-CH3OC6H5C4O3)(CH3OC6H5C4O3)2Tb(H2O)5).H2O (4) contains two independent binuclear units which hydrogen bond to form an extended structure very similar to those of 1-3. The ionic polymers ([Ln(mu2-C4O4)(H2O)6][C6H5NHC4O3].4H2O)n [Ln=Eu (5), Gd (6), Tb (7)] result from the incomplete hydrolysis of the anilinosquarate ion during the attempted synthesis of Eu(III), Gd(III), and Tb(III) anilinosquarate complexes. However, complete hydrolysis of the substituent is accomplished by La(III) ions, and the neutral polymer (La2(mu2-C4O4)2(mu3-C4O4)(H2O)11.2H2O)n (8) is formed. In complexes 5-7, the central lanthanide atom has a square antiprismatic geometry, being bonded to two mu-1,2-bridging squarate and six aqua ligands. Two anilinosquarate counteranions participate in second-sphere coordination via direct hydrogen bonding to aqua ligands on each metal center. These counteranions, and the included waters of crystallization, serve to link neighboring cationic polymer chains via an extensive array of O-H...O hydrogen bonds to form a 3-dimensional network. The polymeric lanthanum complex 8 contains two different metal environments, each having distorted monocapped square antiprismatic geometry. For one lanthanum atom the coordination polyhedron comprises five aqua and four squarate ligands, while for the other the polyhedron consists of six aqua and three squarate ligands; in each case one of the aqua ligands occupies the capping position. The squarate ligand exhibits two coordination modes in 8 (mu-1,2- and mu-1,3-bridging), and neighboring polymer chains are cross-linked by hydrogen bonds to form a 3-dimensional network.  相似文献   

13.
Li J  Li H  Yan P  Chen P  Hou G  Li G 《Inorganic chemistry》2012,51(9):5050-5057
A new β-diketone, 2-(2,2,2-trifluoroethyl)-1-indone (TFI), which contains a trifluorinated alkyl group and a rigid indone group, has been designed and employed for the synthesis of two series of new TFI lanthanide complexes with a general formula [Ln(TFI)(3)L] [Ln = Eu, L = (H(2)O)(2) (1), bpy (2), and phen (3); Ln = Sm, L = (H(2)O)(2) (4), bpy (5), and phen (6); bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline]. X-ray crystallographic analysis reveals that complexes 1-6 are mononuclear, with the central Ln(3+) ion eight-coordinated by six oxygen atoms furnished by three TFI ligands and two O/N atoms from ancillary ligand(s). The room-temperature photoluminescence (PL) spectra of complexes 1-6 show strong characteristic emissions of the corresponding Eu(3+) and Sm(3+) ions, and the substitution of the solvent molecules by bidentate nitrogen ligands essentially enhances the luminescence quantum yields and lifetimes of the complexes.  相似文献   

14.
The reaction of a double-betaine-containing ligand with LnPMo(12)O(40)·nH(2)O (Ln = Dy, Tb and Er) led to the isolation of new polyoxometalate-templated lanthanide-organic hybrid layers with the molecular formula [Ln(L)(1.5)(H(2)O)(5)][PMo(12)O(40)]·1.5CH(3)CN·2H(2)O (Ln = Dy (1), Tb (2) and Er (3); L = 1,4-bis(pyridinil-4-carboxylato)-l,4-dimethylbenzene). All compounds were characterized by elemental analyses, TG analyses, IR and the single-crystal X-ray diffraction. Compounds 1-3 are isostructural and possess a 2D undulating cationic network [Ln(L)(1.5)(H(2)O)(5)](n)(3n+) with the honeycomb-like cavities. Interestingly, the interval 2D networks are further connected by the H-bonds to form a 3D supramolecular framework. Moreover, two of such identical supramolecular frameworks are 2-fold interpenetrated with each other and encapsulate the α-Keggin-type [PMo(12)O(40)](3-) anionic templates and the solvent molecules. These composite compounds display both luminescent properties (induced by organic ligands and/or lanthanide ions) and electrocatalytic activities towards the reduction of nitrite.  相似文献   

15.
Detailed structural, magnetic, and luminescence studies of six different crystalline phases obtained in the lanthanide/pyrimidine-4,6-dicarboxylate/oxalate system have been afforded: {[Ln(μ-pmdc)(μ-ox)(0.5)(H(2)O)(2)]·3H(2)O}(n) (1-Ln), {[Ln(μ-pmdc)(μ-ox)(0.5)(H(2)O)(3)]·2H(2)O}(n) (2-Ln), {[Ln(μ(3)-pmdc)(μ-ox)(0.5)(H(2)O)(2)]·~2.33H(2)O}(n) (3-Ln), {[Ln(2)(μ(3)-pmdc)(μ(4)-pmdc)(μ-ox)(H(2)O)(3)]·5H(2)O}(n) (4-Ln), {[Ln(μ(3)-pmdc)(μ-ox)(0.5)(H(2)O)(2)]·H(2)O}(n) (5-Ln), and [Ln(pmdc)(1.5)(H(2)O)(2.5)] (6-Ln). The slow generation of the oxalate (ox) anion, obtained from the in situ partial hydrothermal decomposition of the pyrimidine-4,6-dicarboxylate (pmdc) ligand, allows us to obtain good shaped single crystals, while direct addition of potassium oxalate provides the same compounds but as polycrystalline samples. The crystal structures of all compounds are based on the double chelation established by the pmdc and ox ligands to provide distorted 2D honeycomb layers that, in some cases, are fused together, leading to 3D systems, by replacing some of the coordinated water molecules that complete the coordination sphere of the lanthanide by uncoordinated carboxylate oxygen atoms of the pmdc. The presence of channels occupied by crystallization water molecules is also a common feature with the exception of compounds 5-Ln. It is worth noting that compounds 3-Ln present a commensurate crystal structure related to the partial occupancy of the crystallization water molecules placed within the channels. Topological analyses have been carried out, showing a previously nonregistered topology for compounds 4-Ln, named as jcr1. The crystal structures are strongly dependent on the lanthanide ion size and the temperature employed during the hydrothermal synthesis. The lanthanide contraction favors crystal structures involving sterically less hindranced coordination environments for the final members of the lanthanide series. Additionally, reinforcement of the entropic effects at high temperatures directs the crystallization process toward less hydrated crystal structures. The magnetic data of these compounds indicate that the exchange coupling between the lanthanide atoms is almost negligible, so the magnetic behavior is dominated by the spin-orbit coupling and the ligand field perturbation. The luminescence properties that exhibit the compounds containing Nd(III), Eu(III), and Tb(III) have been also characterized.  相似文献   

16.
By introduction of 1,4-benzenedicarboxylic acid as the second organic ligand, a series of novel lanthanide carboxyphosphonates with a 3D framework structure, namely, [Ln(3)(H(2)L)(HL)(2)(bdc)(2)(H(2)O)]·7H(2)O (Ln = La (), Ce (), Pr (), Nd (), Sm (), Eu (), Gd (), Tb (); H(3)L = H(2)O(3)PCH(2)NC(5)H(9)COOH; H(2)bdc = HOOCC(6)H(4)COOH) have been synthesized under hydrothermal conditions. Compounds are isostructural and feature a 3D framework in which Ln(iii) polyhedra are interconnected by bridging {CPO(3)} tetrahedra into 2D inorganic layers parallel to the ab plane. The organic groups of H(2)L(-) are grafted on the two sides of the layer. These layers are further cross-linked by the bdc(2-) ligands from one layer to the Ln atoms from the other into a pillared-layered architecture with one-dimensional channel system along the a axis. The thermal stability of compounds has been investigated. Luminescent properties of compounds , and the magnetic properties of compound have also been studied.  相似文献   

17.
Three new lanthanide 1-D coordination polymers ({[Ln(2)(H(2)L)(OAc)(6)]·EtOH·2H(2)O}(n) (Ln = Eu (1), Er (2)) and {YbNiLCl(OAc)(2)(H(2)O)}(n) (3)) and a heterobinuclear complex [YbNiLCl(3)(H(2)O)(3)] (4) are reported which are formed from salen type Schiff-base ligands H(2)L (H(2)L = N,N'-bis(3-methoxysalicylidene)butane-1,4-diamine). The polymeric structures are formed by bridging H(2)L units in the case of 1 and 2, and by acetate groups in 3. The structures of 1-4 were determined by single crystal X-ray crystallographic studies and their luminescence properties in MeCN solution were determined.  相似文献   

18.
Eleven new lanthanide oxalatophosphonate hybrids with a 2D layered structures, namely, [Ln(H(3)L)(C(2)O(4))]·2H(2)O (Ln = La-Dy, Er and Y, H(4)L = C(6)H(5)CH(2)N(CH(2)PO(3)H(2))(2)), have been synthesized under hydrothermal conditions and structurally characterized by X-ray single-crystal diffraction, X-ray powder diffraction, infrared spectroscopy, elemental analysis and thermogravimetric analysis. Compounds 1-11 are isomorphous and they exhibit a 2D framework structure. Two {LnO(8)} polyhedra and four {CPO(3)} tetrahedra are interconnected into a unit via corner-sharing, and the so-built units are bridged by the oxalate anions into a layer. The result of connections in this manner is the formation of a 24-atom window. The thermal stabilities and guest desorption-sorption properties of compounds 1-11 have been investigated. The luminescent properties of compounds 5, 6, 8 and 9 have also been studied.  相似文献   

19.
Liu B  Li BL  Li YZ  Chen Y  Bao SS  Zheng LM 《Inorganic chemistry》2007,46(21):8524-8532
Two types of lanthanide diruthenium phosphonate compounds, based on the mixed-valent metal-metal bonded paddlewheel core of Ru(2)(hedp)(2)(3-) [hedp = 1-hydroxyethylidenediphosphonate, CH(3)C(OH)(PO(3))(2)], have been prepared with the formulas Ln(H(2)O)4[Ru(2)(hedp)(2)(H(2)O)2].5.5H(2)O (1.Ln, Ln = La, Ce) and Ln(H(2)O)4[Ru(2)(hedp)(2)(H(2)O)(2)].8H(2)O (2.Ln, Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er). In both types, each Ru(2)(hedp)2(H2O)23- unit is linked by four Ln(3+)ions through four phosphonate oxygen (OP) atoms and vice versa. The geometries of the {LnO(P4)} group, however, are different in the two cases. In 1.Ln, the geometry of {LnO(P4)} is closer to a distorted plane, and thus a square-grid layer structure is found. In 2.Ln, the geometry of {LnO(P4)} is better described as a distorted tetrahedron; hence, a unique PtS-type open-framework structure is observed. The channels generated in structures 2.Ln are filled with water aggregates with extensive hydrogen-bond interactions. The magnetic and electrochemical properties are also investigated.  相似文献   

20.
Three series of porous lanthanide metal-organic coordination polymers, namely [Cu(bpy)Ln(3)(ip)(5)(Hip)(H(2)O)] [Ln = Er (1a), Y (1b), Eu (1c); bpy = 2,2'-bipyridine, H(2)ip=isophthalic acid], [Cu(3)(bpy)(2)Ln(2)(ip)(6)(H(2)O)(5)] [Ln = Yb (2a), Gd (2b), Tb (2c)], and [Cu(3)Ln(2)(ip)(6)] [Ln = Eu (3a), Gd (3b)] have been synthesized hydrothermally by the reaction of the combination of 3d-4f metal centers and N-/O-donor ligands. X-ray diffraction analyses reveal that polymers 1a-c and 2a-c, as well as 3a, b are isomorphous in structure. Polymers 1a-c consist of 3D alpha-Po networks based on a inorganic rod-shaped secondary building units (SBUs) of {Er(6)Cu(2)(bipy)(2)(O(2)C)(11)} which are 27.03 A in length. Polymers 2a-c also contain 3D alpha-Po networks, constructed from shorter (14.79 A) but similarly rod-shaped SBUs of {Yb(2)Cu(3)(bpy)(2)(O(2)C)(12)}. The structure also contains hydrogen-bonded (H(2)O)(6) chains which can be reversibly dehydrated/rehydrated. Polymers 3a, b contain metal carboxylate substructures which have 2D (6,3) topologies; these layers are bridged by the ip(2-) ligands to give an overall 3D network which contains two sorts of cavities. This series of Ln-Cu coordination polymers are further characterized by antiferromagnetic behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号