首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Light scattering by large mineral-dust particles with small-scale surface roughness is investigated by comparing model simulations with laboratory-measured scattering matrices of two distinct dust samples collected from the Sahara desert. The samples have been chosen on the basis of their large effective radii, and the simulations are based on their measured size distributions. Size parameters larger than about 30 are modeled using a modified ray-optics model RODS (Ray optics with diffuse and specular interactions), while smaller particles are simulated with a T-matrix model. RODS allows us to mimic the surface roughness of large dust particles by covering the particle surface by a thin layer of external scatterers with specific single-scattering properties. The Gaussian-random-sphere geometry is used for the shapes of large dust particles. Small particles are modeled as an axial-ratio distribution of spheroids with smooth surfaces. One of the samples consists wholly of large particles and its scattering matrix can be reproduced very well by the RODS model, except for the phase function. The incorporation of wavelength-scale roughness is, however, necessary for good fits. The other sample, consisting of both small and large particles, proves more challenging to match with simulations. The analysis indicates, however, that the difficulties arise at least partially from the small-particle contribution, while RODS results are consistent with the measurements. Further, the results imply that the agreement with measurements would improve if roughness could also be accounted for in the small-particle simulations. Overall, the RODS method seems promising for modeling the optical properties of mineral-dust particles much larger than the wavelength.  相似文献   

2.
We present a realistic shape model for nonspherical, vesicular particles and use the model to derive single-scattering properties of volcanic fine-ash particles. Light-scattering computations with discrete-dipole approximation reveal that, qualitatively, scattering by the model particles resembles that of the measured, real volcanic ash particles. Comparison of compact and vesicular ash shows that porosity promotes positive degree of linear polarization and decreases the depolarization ratio for both large and small vesicles. Yet, the single-scattering properties of ash particles with large vesicles are found to be surprisingly similar to those of compact ash particles. A comparison with Mie computations of equal-volume spheres indicates that for small size parameters, the spherical shape underestimates the asymmetry parameter of volcanic ash particles; whereas, for larger size parameters, it is overestimated.  相似文献   

3.
沙尘气溶胶粒子群的散射和偏振特性   总被引:8,自引:5,他引:8  
郝增周  龚芳  潘德炉  黄海清 《光学学报》2012,32(1):101002-22
根据Mie散射理论,以对数正态分布函数描述沙尘气溶胶粒子群的粒径尺度分布,计算了沙尘气溶胶粒子群在0.2~40μm波段间对太阳短波辐射和地球大气长波辐射的单次散射反照率、散射相矩阵函数,揭示了不同相对湿度时,沙尘粒子群对入射辐射的散射和偏振的特征。结果表明,沙尘粒子群的单次散射反照率随着入射波长的增加有较大起伏,不同相对湿度条件下,变化趋势基本一致;在可见光、近红外波段单次散射反照率随湿度增加而变大,湿度95%时非常接近于1;大于10μm的热红外波段单次散射反照率随相对湿度增加而减小,具有较强的吸收辐射能力。散射辐射强度受湿度影响较小,随散射角的增加呈现先减小后增大的趋势,且增大的趋势随着波长的增加而减弱;不同波段上,线偏振和圆偏振随散射角和相对湿度变化存在差异;在前向和后向仅对入射辐射为圆偏振辐射产生圆偏振散射;散射光的偏振特性及其湿度差异主要表现在后向散射区,多以拱形形式体现。拱顶峰值散射角位置存在差异,且峰值散射角随相对湿度的降低向后向漂移。  相似文献   

4.
The single-scattering properties of sand/dust particles assumed to be ellipsoids are computed from the discrete dipole approximation (DDA) method at microwave frequencies 6.9-89.0 GHz in comparison with the corresponding Lorenz-Mie solutions. It is found that the single-scattering properties of sand particles are strongly sensitive to the shapes of the particles. The bulk scattering properties of sandstorms composed of spherical or nonspherical particles are investigated by averaging the single-scattering properties of these particles over log-normal particle size distributions. Furthermore, a vector radiative transfer model is used to simulate microwave radiances. The microwave brightness temperatures in the vertical polarization model are essentially not sensitive to sand particle habit, whereas microwave brightness temperature polarization differences are influenced by particle habit. It is shown that microwave brightness temperatures and brightness temperature polarization differences may be useful for estimating the effective particle sizes and mass loading of sandstorms.  相似文献   

5.
Dust particles in space often grow by mutual collisions and appear to be an agglomeration of individual grains, the morphology of which can be described by the concept of fractals. In this paper, we study light scattering by fractal aggregates of identical spheres (monomers) using the superposition technique incorporated into the T-matrix method where the orientationally averaged scattering matrix is analytically obtained. We also apply the discrete-dipole approximation, in which the dipole polarizability of spherical monomers is determined by the first term of the scattering coefficients in the Mie theory. Two cases of the ballistic aggregation process (particle–cluster and cluster–cluster aggregations) are considered to model fractal aggregates consisting of silicate or carbon material. The dependences of light-scattering properties on the monomer sizes, aggregate structures and material compositions are intensively investigated. The light-scattering properties of the fractal aggregates strongly depend on the size parameters of the monomers. The difference in the scattering function between the particle–cluster and cluster–cluster aggregates can be seen in the case of monomers much smaller than the wavelength of incident radiation. When the size parameter of monomers exceeds unity, the material composition of the monomers influences the light-scattering properties of the aggregates, but different morphologies result in similar scattering and polarization patterns. We show that silicate aggregates consisting of submicron-sized monomers, irrespective of the aggregate size and morphology, produce a backscattering enhancement and a negative polarization observed for dust in the solar system.  相似文献   

6.
以小角度近似为条件,利用逐级递归的方法推导了激光信号在沙尘天气下的辐射传输方程,得到了多次散射下的光强分布函数,以及波长和不对称因子对光强的影响。同时,通过比较不同散射相位函数及沙尘粒子的散射特性,采用了修正的TTHG(Two Term Henyey-Greenstein)散射相位函数,更加全面地反映了沙粒散射后光强的变化规律。研究结果表明,随着光学厚度的增加,散射光强呈现出先增大后减小的趋势,且多次散射的比重相比于单次散射而言逐渐增大。当散射次数超过3次以上时,接收光强的变化可以忽略不计。相对于Mie理论下的结果而言,采用小角度近似理论,从辐射传输的角度分析沙粒的散射特性误差更小,实现了准确描述沙尘天气下激光信号传输特性的目的。  相似文献   

7.
There is experimental evidence that the non-sphericity of certain atmospheric particles can cause scattering properties different from those predicted by standard Mie theory. Numerous studies indicate the need to consider the presence of non-spherical particles in modeling the optical properties of atmospheric aerosols. On the other hand, natural aerosols show a great variety of shapes, making difficult a realistic choice of a particle shape (or shape mixture) model. In this paper, we test a parameterization of the particle shape in the retrieval of size distribution, phase function, single scattering albedo and asymmetry parameter from direct and sky-radiance measurements. For this purpose we have substituted the Kernel based on the Mie theory included in the model SKYRAD.PACK by one derived for non-spherical particles. The method is applied under different atmospheric conditions, including Saharan dust outbreak, polluted and local mineral episodes. We compare the results with those obtained by the well known spheroids algorithm used in the AERONET network.  相似文献   

8.
Accurate modeling of the optical properties of atmospheric mineral dust is important for climate modeling calculations and remote sensing data retrievals. Atmospheric mineral dust in the accumulation mode size range is often rich in silicate clays including kaolinite and illite. This is important because dust optical properties depend on particle shape, and fundamental clay particles are known to consist of very thin flakes.In this combined laboratory and modeling study, we investigate the optical properties (IR extinction and visible light scattering) of two samples of silicate clay dust aerosol, kaolinite and illite. Particle size distributions are measured simultaneously with the optical properties. T-Matrix theory based simulations using a spheroidal particle approximation are compared with experimental data. We find that the full range of visible scattering and polarimetry data, and IR extinction profiles are not well fit by assuming a single size–shape distribution for the aerosol. In contrast, a simple bimodal distribution model that treats small particles (fundamental clay flakes) in the distribution as highly eccentric oblate spheroids with axial ratio parameters ≥5, but approximates larger particles by a more moderate shape distribution with axial ratio parameters <3, gives better agreement with the full range of experimental data. These conclusions are consistent with mineralogical data on the dimensions of fundamental clay particles.  相似文献   

9.
Studies of the physical parameters that influence the single scattering properties of a size distribution of small particles in random orientation are fundamental in understanding the origin of the observed dependence of the scattering matrix elements on the scattering angle. We present results of extensive calculations of the single scattering matrices of small nonspherical particles performed by a computational model based on the Discrete-Dipole Approximation. We have particularly studied the sensitivity of the size-averaged scattering properties at visible wavelengths of nonspherical, randomly oriented absorbing particles considering changes in shape, porosity and refractive index. These studies have importance regarding the inversion of physical properties of small particles as measured in the laboratory and the dust properties in various astrophysical and atmospherical environments. We have found that size distributions of randomly oriented irregular particles of different shape, including large aspect ratio particles, show similar scattering matrix elements as a function of the scattering angle, in contrast with the pattern found for regularly shaped particles of varying axis ratios, for which the scattering matrix elements as a function of the scattering angle show much larger differences among them. Regarding porosity, we have found a very different pattern in the scattering matrix elements for an ensemble of compact and porous particles. In particular, the linear polarization for incident unpolarized light produced by compact and absorbing particles of large size parameter tend to mimic the pattern found for large absorbing spheres. For porous particles, however, the linear polarization for incident unpolarized light tends to decrease as the size of the particle grows, with the maximum being displaced towards smaller and smaller scattering angles.  相似文献   

10.
A new physical-geometric optics hybrid (PGOH) method is developed to compute the scattering and absorption properties of ice particles. This method is suitable for studying the optical properties of ice particles with arbitrary orientations, complex refractive indices (i.e., particles with significant absorption), and size parameters (proportional to the ratio of particle size to incident wavelength) larger than ∼20, and includes consideration of the edge effects necessary for accurate determination of the extinction and absorption efficiencies. Light beams with polygon-shaped cross sections propagate within a particle and are traced by using a beam-splitting technique. The electric field associated with a beam is calculated using a beam-tracing process in which the amplitude and phase variations over the wavefront of the localized wave associated with the beam are considered analytically. The geometric-optics near field for each ray is obtained, and the single-scattering properties of particles are calculated from electromagnetic integral equations. The present method does not assume additional physical simplifications and approximations, except for geometric optics principles, and may be regarded as a “benchmark” within the framework of the geometric optics approach. The computational time is on the order of seconds for a single-orientation simulation and is essentially independent of the size parameter. The single-scattering properties of oriented hexagonal ice particles (ice plates and hexagons) are presented. The numerical results are compared with those computed from the discrete-dipole-approximation (DDA) method.  相似文献   

11.
微纳粒子光学散射分析   总被引:1,自引:0,他引:1       下载免费PDF全文
付成花 《物理学报》2017,66(9):97301-097301
为实现利用光学方式对微纳尺度粒子性质的研究,探讨了亚微米线及亚微米球对光电磁波的散射效应.微纳米尺度粒子的光学散射,散射粒子尺寸与入射光波长尺寸可满足米氏(Mie)散射条件.利用Matlab数值模拟的方式,将分析结果以模拟图的形式清晰地展现出来.满足尺寸条件的层状粒子以及任意多个散射粒子存在时对电磁波的散射都可采用Mie散射分析方法,并且针对多粒子散射,分析了散射体位于不同位置时对散射造成的影响.通过分析光学散射光场相关的微分散射截面及近场散射电磁场分布,可得出散射光场随散射角度的变化趋势,以及散射光场受各类因素的影响,包括入射光偏振态、散射粒子尺寸、散射粒子结构及粒子构成层数、散射粒子数量等的影响,也包括一些隐含因素对散射光场的影响,如散射粒子与周围介质的相对折射率.本文的科学意义体现在:与入射光波长尺寸可比的亚微米尺度的粒子,可用作传感器,对于其位移的探测可通过光学方式来实现,而由于粒子本身特性对散射光的影响具有一定的参考价值,从而使通过光学方式对机械位移的读出具有更高准确度.研究结果对于光学方式探测亚微米线机械振动具有指导意义.  相似文献   

12.
Monte Carlo radiative transfer calculations are performed to examine the forward scattering effects on retrievals of dust aerosol optical depth (AOD) from ground-based instruments. We consider dust aerosols with different AOD, effective radius and imaginary refractive index at 0.5 μm wavelength. The shape of dust aerosols is assumed to be spheroids and the equivalent spheres that preserve both volume and projected area (V/P) are also considered. The single-scattering albedos and asymmetry factors of spheroids and V/P-equivalent spheres have small differences, but the scattering phase functions are very different for the scattering angle range ∼90-180°. The relative errors of retrieved AOD caused by forward scattering effects due to the differences between the single-scattering properties of spheroids and spheres are similar. It is shown that at solar zenith angle (SZA) smaller than ∼70° the effect of the forward scattering is generally small although the relative errors in retrieved AOD can be as large as −10% when re=2. However, the largest relative errors, which can reach −40%, appear at high SZA (>∼70°) with AOD larger than 1. This is not caused by the increase of forward scattering intensity, but is due to the strong attenuation of solar direct beam.  相似文献   

13.
《Optik》2014,125(19):5741-5745
Mueller matrix is one approach to characterizing optical polarization of the turbid media. We have simulated the two-dimensional images of Mueller matrix based on single-scattering approximation model and implemented experiments to verify the simulations. By comparing the experimental results to the theoretical simulations, we have obtained some conclusions. When the particle size is smaller than the wavelength, the linearly polarized light propagating through the turbid media of Rayleigh scatterers has better polarization-maintaining ability. Whereas when the particle size is larger than the wavelength, the circularly polarized light propagating through the turbid media of Mie scatterers has better polarization-maintaining ability. Moreover, the radial dependence of the element patterns becomes weak as the transport mean free path decreases. This study can help us understand to the fundamental principle of optical polarization.  相似文献   

14.
沙尘大气电磁波多重散射及衰减   总被引:1,自引:0,他引:1       下载免费PDF全文
杨瑞科  李茜茜  姚荣辉 《物理学报》2016,65(9):94205-094205
为了使干旱沙漠地区的电子系统能够全天候的工作, 必须开展沙尘大气的电磁波多重散射及衰减特性研究. 根据Mie理论、沙尘大气粒子尺寸分布和能见度的关系得到了电磁波沙尘大气传播衰减的计算方法, 计算了不同沙尘大气能见度的37 GHz电磁波的衰减, 与其他经验公式及文献中的实验结果进行比较, 文中方法得到的结果更接近于测量结果. 为了研究较低能见度沙尘暴中电磁波的传播特性, 需研究沙尘大气的多重散射效应. 应用Monte Carlo模拟方法, 在沙尘粒子为干燥和5%水含量时, 模拟了37 GHz和93 GHz电磁波在沙尘大气中传播时考虑多重散射效应的衰减, 并与基于Mie理论的计算结果进行比较, 结果显示, 在37 GHz时, 沙尘大气的多重散射对衰减的影响小, 在93 GHz时多重散射显著, 沙尘大气能见度越低, 多重散射的影响越显著. 粒子水含量增加使电磁波的衰减显著增大, 对多重散射的影响不明显. 因此, 在相同大气能见度下, 沙尘天气越干燥, 多重散射影响越大, 电磁波衰减减小越显著.  相似文献   

15.
Broadband Mie scattering is used to determine the parameters of polystyrene aerosol beads in air,such as size and wavelength dependence of refractive index.This method consists in the selection of such parameters of the scattering object,which reproduce observed spectrum properties.That is why it is very sensitive and hence very precise.We found that there is an ambiguity of polystyrene aerosol beads properties,determined with this method.Different combinations of polystyrene particle size and its refractive index can give the same position of Mie resonances.This ambiguity leads to an increase in the error in determining the size and refractive index of the particle.The refined errors are calculated and the way of their reduction is indicated.  相似文献   

16.
根据Mie散射理论,对金银复合粒子的散射强度和偏振度进行了数值计算与理论分析,得到了散射强度、偏振度与散射角、入射波长及核壳大小之间的关系。结果表明,入射波长越大,前向散射越强,易出现线偏振光;而核壳半径越大,背向散射越弱,易出现退偏振现象。该结论对金银复合材料光学特性方面的开发和应用提供理论参考。  相似文献   

17.
Adequate modeling of light scattering by non-spherical particles is one of the major difficulties in remote sensing of atmospheric aerosols, mainly in desert dust outbreaks. In this paper we test a parameterization of the particle shape in size distribution, single-scattering albedo, phase function and asymmetry parameter retrieval from beam and sky-radiance measurements, based on the model Skyrad.pack, taking into account the principal plane measurements configuration. The method is applied under different Saharan dust outbreaks. We compare the results with those obtained by the almucantar measurements configuration. The results obtained by both methodologies agree and make possible to extend the parameter retrieval to smaller zenith angles than that used in the retrieval from almucantar geometries.  相似文献   

18.
Direct climate radiative forcing depends on the aerosol optical depth τ, the single scattering albedo ?, and the up-scatter fraction β; these quantities are functions of the refractive index of the particles, their size relative to the incident wavelength, and their shape. Sea-salt aerosols crystallize into cubic shapes or in agglomerates of cubic particles under low relative humidity conditions. The present study investigates the effects of the shape of dried sea-salt particles on the detection of light scattering from the particles. Ground-based measurements of scattering and backscattering coefficients have been performed with an integrating nephelometer instrument for a wavelength . The measurements are compared to two models: the Mie theory assuming a spherical shape for the particles and the Discrete Dipole Approximation (DDA) model for the hypothesis of cubic shape of the sea-salt aerosols. The comparison is made accurately by taking into account the actual range of the scattering angles measured by the nephelometer in both models that is from 7° to 170° for the scattering coefficient and from 90° to 170° for the backscattering coefficient. Modeled scattering and backscattering coefficients increase for nonspherical particles compared to spherical shape of particles with diameter larger than about 1 μm. However, the comparison of the modeling results with the measurements gives best agreement for particles diameter less than about 1 μm. The size distribution of the particles is measured with two instruments with different size bins: an electrical low-pressure impactor (ELPI) and an aerodynamic particle sizer (APS). It is found that the size of the bins of the instruments to determine the number concentration of the particles in accordance with their diameter is critical in the comparison of measurements with modeling.  相似文献   

19.
The Mie theory and Rayleigh approximation are two basic methods to study the EM scattering of uncharged spherical particle, and when the particle radius is much smaller than the incident wavelength, they are equivalent, but whether the Rayleigh approximation is still equivalent to Mie theory when we use them to calculate the EM scattering of small charged particle, there is still no any report published to discuss this problem. In this paper we make some comparisons between Mie theory and Rayleigh approximation to solve the EM scattering of partially electrification spherical particles. The results showed that the Mie theory would be more suitable to calculate the scattering of charged spherical particles.  相似文献   

20.
利用离散偶极子近似法分析了一种随机取向旋转椭球体沙尘气溶胶粒子模型在尺度参数变化范围为0.1~23时(波长0.55!m对应有效半径为0.01~2!m)的光学特性,研究了沙尘粒子非球形性程度对其光学特性的影响,并考察了非球形粒子的随机取向能否用等体积球体来代替。就随机取向单分散和多分散旋转椭球体沙尘气溶胶而言,粒子非球形特征越明显,消光效率因子、不对称因子和单次散射反照率基本上偏离其等体积球体越大;对于相同的非球形,不对称因子偏离其等体积球体的相对偏差要比消光效率因子和单次散射反照率要大。非球形粒子的随机取向并不能使其光学特性严格等效为其等体积球体的光学特性。如果粒子形状偏离球体较小,则非球形粒子的随机取向的平均效果能使其消光效率因子、不对称因子和单次散射反照率近似用等体积球体的对应光学参量来等效;而如果粒子形状偏离球形较大,仅有单次散射反照率可以近似用等体积球体的单次散射反照率来等效,例如,轴半径比为16的旋转椭球体沙尘粒子的单次散射反照率偏离其等体积球体仅在3%以内。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号