首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A multi-section circuit model of quantum dot semiconductor optical amplifier is proposed by employing the standard rate equations. Using this model, gain spectra, saturation property, and occupation probability of quantum dot semiconductor optical amplifier are analyzed by PSPICE simulation. An integrated circuit subsystem of quantum dot semiconductor optical amplifier cascaded with electro-absorption modulator is also derived to investigate the patterning effect reduction in wavelength conversion.  相似文献   

2.
A quantum dot spin light emitting diode provides a test of carrier spin injection into a qubit and a means for analyzing carrier spin injection and local spin polarization. Even with 100% spin-polarized carriers the emitted light may be only partially circularly polarized due to the geometry of the dot. We have calculated carrier polarization-dependent optical matrix elements for InAs/GaAs self-assembled quantum dots (SAQDs) for electron and hole spin injection into a range of quantum dot sizes and shapes, and for arbitrary emission directions. Calculations for typical SAQD geometries with emission along [110] show light that is only 5% circularly polarized for spin states that are 100% polarized along [110]. Measuring along the growth direction gives near unity conversion of spin to photon polarization and is the least sensitive to uncertainties in SAQD geometry.  相似文献   

3.
A linear optical quantum computer relies on interference between photonic qubits for logic, and entanglement for near-deterministic operation. Here we measure the interference and entanglement properties of photons emitted by a quantum dot embedded within a light-emitting diode. We show that pairs of simultaneously generated photons are entangled, and indistinguishable from subsequently generated photons. We measure entanglement fidelity of 0.87 and two-photon-interference visibility of 0.60 ± 0.05. The visibility, limited by detector jitter, could be improved by optical cavity designs.  相似文献   

4.
We theoretically investigate the propagation of a weak probe laser pulse in a triangular quantum dot molecules scheme based on the tunneling induced transparency. We find that the ultraslow optical solitons can be realized due to the destructive quantum interference induced by the interdot tunneling coupling which can be adjusted by the gate voltage appropriately. This work may provide practical applications such as electro-optic modulated devices and other information processes in semiconductor quantum dots structure.  相似文献   

5.
A new microscopic approach to the optical transitions in quantum dots and quantum dot molecules, which accounts for both diagonal and nondiagonal exciton-phonon interaction, is developed. The cumulant expansion of the linear polarization is generalized to a multilevel system and is applied to calculation of the full time dependence of the polarization and the absorption spectrum. In particular, the broadening of zero-phonon lines is evaluated directly and discussed in terms of real and virtual phonon-assisted transitions. The influence of Coulomb interaction, tunneling, and structural asymmetry on the exciton dephasing in quantum dot molecules is analyzed.  相似文献   

6.
Current–voltage and low frequency excess electrical noise characteristics of two different—Schottky diode and n-i-n diode—GaAs structures embedded with self-assembled In(Ga)As quantum dots are reported. We find the growth of quantum dots induces defects not only near the quantum dot but also extended to quite a distance toward the growth direction. In Schottky diode structure, comparing with the reference sample without the quantum dot layer, the current dependence of the low frequency noise spectral density indicated that the noise is from the generated interface states with the density increasing towards the band tail. Also the crystal quality of the Schottky diode including the quantum dot layer, deduced from the Hooge parameter, was slightly worse than that of the reference sample. For n-i-n diode structure, the current–voltage relation was linear, and a quadratic current dependence of the noise spectral density was observed. The Hooge parameter for the n-i-n structure was determined to be on the order of unity indicating the general degradation of the structure.  相似文献   

7.
The manipulation of bistable curve in the infrared (IR) region has been investigated theoretically in a unidirectional ring cavity doped by a four-level InGaN/GaN quantum dot nanostructure. The four-level quantum dot nanostructure is designed numerically by using the Schrödinger and Poisson equations. By controlling the size of the quantum dot and external voltage, one can design a four-level quantum dot with appropriate energy levels which can be suitable for interaction with IR signals. It is realized that the incoherent pumping fields play an essential role in controlling the intensity threshold of optical bistability. Decoherence effects such as the dephasing rate and electron density of the quantum dot are also analyzed at the threshold of optical bistability. Our proposed model due to its important application in all-optical systems may be favorable for real experimental evolution in infrared regions.  相似文献   

8.
We report direct evidence for the control of the oscillator strength of the exciton state in a single quantum dot by the application of a vertical electric field. This is achieved through the study of the radiative lifetime of a single InGaN-GaN quantum dot in a p-i-n diode structure. Our results are in good quantitative agreement with theoretical predictions from an atomistic tight-binding model. Furthermore, the increase of the overlap between the electron and hole wave functions due to the applied field is shown experimentally to increase the attractive Coulomb interaction leading to a change in the sign of the biexcitonic binding energy.  相似文献   

9.
We study theoretically the quantum optical properties of hybrid molecules composed of an individual quantum dot and a metallic nanoparticle. We calculate the resonance fluorescence of this composite system. Its incoherent part, arising from nonlinear quantum processes, is enhanced by more than 2 orders of magnitude as compared to that of the dot alone. The coupling between the two systems gives rise to a Fano interference effect which strongly influences the quantum statistical properties of the scattered photons: a small frequency shift of the incident light field may cause changes in the intensity correlation function of the scattered field of orders of magnitude. The system opens a good perspective for applications in active metamaterials and ultracompact single-photon devices.  相似文献   

10.
We report a 2D simulation of electrical and optical characteristics of green color InGaN/GaN multiple quantum well light-emitting diodes by APSYS software with a dot-in-well model. The In-rich quantum dot-like structure in InGaN/GaN multiple quantum wells has been considered in the LED experimental data analysis. Simulation results based on the quantum dot model are in better agreement with the experimental data than those based on the purely quantum well model, indicating that the quantum dot spontaneous emission and the non-equilibrium quantum transport play important roles in the InGaN/GaN multiple quantum well light-emitting diodes.  相似文献   

11.
The dispersions of the top interface optical phonons and the side interface optical phonons in cylindrical quantum dots are solved by using the dielectric continuum model. Our calculation mainly focuses on the frequency dependence of the IO phonon modes on the wave-vector and quantum number in the cylindrical quantum dot system. Results reveal that the frequency of top interface optical phonon sensitively depends on the discrete wave-vector in z direction and the azimuthal quantum number, while that of the side interface optical phonon mode depends on the radial and azimuthal quantum numbers. These features are obviously different from those in quantum well, quantum well wire, and spherical quantum dot systems. The limited frequencies of interface optical modes for the large wave-vector or quantum number approach two certain constant values, and the math and physical reasons for this feature have been explained reasonably.  相似文献   

12.
PbTe/CdTe量子点的光学增益   总被引:2,自引:0,他引:2       下载免费PDF全文
徐天宁  吴惠桢  斯剑霄 《物理学报》2008,57(4):2574-2581
PbTe/CdTe量子点是一类新型异系低维结构材料,实验发现具有强的室温中红外光致发光现象.为研究这一材料体系的发光特性,建立了理论模型,计算了PbTe/CdTe量子点的光学跃迁和增益.模型基于k·p包络波函数方法并考虑了PbTe能带结构的各向异性.分析了量子点光学增益与量子点尺寸、注入载流子浓度的关系.结果表明,当注入载流子浓度在(0.3—3)×1018cm-3范围时,尺寸为15—20nm的量子点可以产生 关键词: PbTe/CdTe量子点 光学增益 铅盐矿半导体  相似文献   

13.
This work examines the possibility of controlling the parameters of InAs/GaAs quantum dot arrays obtained by metal-organic chemical vapor deposition (MOCVD) at atmospheric pressure with using antimony as a surfactant. The possibility of controlling the parameters and optical properties of InAs quantum dot arrays by varying the surface concentration of Sb atoms in a GaAs buffer layer surface is demonstrated. A model of quantum dot array formation in the presence of Sb atoms is proposed.  相似文献   

14.
The exciton-longitudinal optical phonon interaction is theoretically investigated for the case of polar semiconductor cylindrical quantum dots embedded in semiconductor matrix. The theory is developed within the dielectric continuum model considering the Fröhlich interaction between electrons and confined bulk longitudinal optical phonons for a configurational interaction model of quantum dot. Representative longitudinal optical phonon mode for the exciton-phonon interaction is predicted for cylindrical InAs/GaAs quantum dots.  相似文献   

15.
Transient nonlinear optical spectroscopy, performed on excitons confined to single GaAs quantum dots, shows oscillations that are analogous to Rabi oscillations in two-level atomic systems. This demonstration corresponds to a one-qubit rotation in a single quantum dot which is important for proposals using quantum dot excitons for quantum computing. The dipole moment inferred from the data is consistent with that directly obtained from linear absorption studies. The measurement extends the artificial atom model of quantum dot excitonic transitions into the strong-field limit, and makes possible full coherent optical control of the quantum state of single excitons using optical pi pulses.  相似文献   

16.
Under the dielectric continuum model and separation of variables, the interface optical (IO) phonon modes and electron-optical-phonon interaction in rectangular quantum wire and quantum dot embedded in a nonpolar matrix are studied. We found that there exist various types of IO phonon modes in rectangular nanostructures. The IO phonon modes in rectangular quantum wire include IO-propagating (IO-PR) and IO-IO hybrid phonon modes, while the IO phonon modes in rectangular quantum dot contain IO-IO-PR and IO-PR-PR hybrid phonon modes. The results of numerical calculation show that these hybrid phonon modes contain corner optical (CO) phonon modes and edge optical (EO) phonon modes. The potential applications of these results are also discussed.  相似文献   

17.
The optical nonlinearity of a CdTe quantum dot enhanced by a gold nanoparticle has been theoretically studied by employing the multi-bands effective mass method. The energy levels have been computed using 6×6 k.p model for the valence band. The semiconductor quantum dot-size-dependent third-order susceptibility of third harmonic generation in a CdTe-Au nanocrystal complex has been analyzed. It is found that the metal nanoparticle enhances the optical nonlinearity of the semiconductor quantum dot due to the dipole/multipole interaction that will bring in the strong damping and the field enhancement. By choosing the radius of CdTe quantum dot, the third-order nonlinear susceptibility for third harmonic generation can be optimized for the one- and multi-photon resonance. Also, we can alter the optical nonlinearity by changing the ratio of semiconductor-metal nanoparticle distance to the metal nanoparticle radius.  相似文献   

18.
Jinsheng Huang  Libin 《Physics letters. A》2008,372(23):4323-4326
Dipole-allowed optical absorption in a parabolic quantum dot with two electrons are studied by using the exact diagonalization techniques and the compact density-matrix approach. Numerical results are presented for typical GaAs parabolic quantum dots. The results show that the total optical absorption coefficient of two electrons in quantum dot is about five times smaller than that of one electron in quantum dot.  相似文献   

19.
The optical performance of InAs/InGaAsP quantum dot (QD) lasers grown on (1 0 0) InP was studied for three different material structures. The most efficient QD laser structure, having a threshold current of 107 mA and an external differential quantum efficiency of 9.4% at room temperature, was used to form the active region of a grating-coupled external cavity tunable laser. A tuning range of 110 nm was demonstrated, which was mainly limited by the mirror and internal losses of the uncoated laser diode. Rapid state-filling of the QDs was also demonstrated by observing the evolution of the spectra with increasing injected current.  相似文献   

20.
We present a microscopic model for the dynamic scattering and emission spectrum of a semiconductor quantum dot, after coherent optical excitation. We investigate the spectral properties and the emission dynamics of the different scattering and emission contributions considering a V-type semiconductor quantum dot model under resonant conditions and include the coupling to LO-phonons via higher order Born approximations. This theory helps identifying the different contributions to the spectrum via time resolved calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号