首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Structure and optical properties of MoO3-doped lead borate glasses which contain high PbO content (60, 70 and 80%) have been studied using Fourier transform infrared (FTIR) and ultraviolet–visible (UV–VIS) spectroscopic tools. FTIR spectra reveal absorption bands which are characteristic for various structural units of borate network, mainly BO3 triangles and BO4 tetrahedra, in addition to the PbOn (where n = 3 and/or 4) structural units. UV–VIS optical absorption spectra reveal broad intense charge transfer UV bands due to Pb2 + ions in the range 320–385 nm. Within this range, molybdenum ions, preferably Mo3 + and Mo5 +, can interfere at about 360–385 nm. Additionally, molybdenum ions give a weak visible band at about 850–860 nm. The optical absorption spectra of the studied glasses show marked resistance to successive gamma irradiation up to 5 Mrad. This shielding behavior can be related to the present high content of the high atomic mass Pb2 + ions. Changes in the atomic structure before and after gamma irradiation are described and explained.  相似文献   

2.
S. Rada  A. Dehelean  E. Culea 《Journal of Non》2011,357(16-17):3070-3073
Glasses in the xEu2O3·(100-x)[4TeO2·PbO2] system where 0  x  50 mol% have been prepared using the melt quenching method. The influence of europium ions on the structure of lead–tellurate glasses has been investigated using density measurements, FTIR and UV–VIS spectroscopy. Structural changes produced by increasing the rare earth concentration were followed.The europium and lead ions show a preference towards [TeO3] structural units causing a deformation of the TeOTe linkages. Structural changes inferred by analyzing the band shapes of IR spectra revealed that the increase of the Eu+ 3 content causes the intercalation of [EuOn] entities in the [TeO4] chain network. The excess of oxygen can be supported into the glass network by the formation of [PbOn] and [EuOn] structural units.The UV–VIS spectroscopy data show that europium ions enter the glass matrix in the Eu2+ and Eu3+ valence states, the last being predominant in the studied glasses. The Pb+ 2 ions produce strong absorption in the ultraviolet domain.  相似文献   

3.
Shaaban M. Salem 《Journal of Non》2012,358(11):1410-1416
Homogeneous (50P2O5–(30 ? x)PbO–20NaF–xWO3 where x = 0.0, 5, 10 and 15 mol%) glasses were synthesized using a melt-quenching method. The short range structures of the phosphate samples were examined by Fourier transform infrared spectroscopy. The infrared spectral studies have pointed out the existence of conventional PO4, WO4 and WO6 structural units in the glass network, the number of WO4 tetrahedra decreases as WO3 concentration increases. The optical transmittance and reflectance spectrum of the glasses have been recorded in the wavelength range of 190–1100 nm. The values of the optical band gap Eop for all types of electronic transitions and refractive index have been determined and discussed. The real and imaginary parts ε1 and ε2 of the dielectric constant have been determined. The type of electronic transitions in the present glass system is indirectly allowed and the high values for the refractive index and dispersion are recorded due to the high polarizability of tungsten ions. The results of refractive indices as determined reveal the homogeneity of samples and were found to depend on the glass composition. The electrical properties of the glasses were investigated by ac conductivity from 0.12 to 100 kHz for temperatures ranging from room temperature to 600 K. The study of dielectric properties suggested increase in the insulating character of the glass system with increase in the content of WO3. The ac conductivity in the high temperature region seems to be connected mainly with the polarons involved in the process of transfer from W4+ to W5+ ions.  相似文献   

4.
xCuO(1-x)[P2O5·PbO] glass system with 0  x  50 mol% was prepared and investigated by means of EPR and IR spectroscopy in order to evidence the structural changes induced by different amounts of copper ions. EPR spectra analysis together with EPR parameters has indicated a distorted tetragonal symmetry – named tetrahedral local symmetry – for Cu2 + ions in the studied glasses. A change in the shape of EPR spectra was also observed as for small CuO concentration (x < 20 mol%) these glasses present an asymmetrical line typical for isolated ions and for high CuO content this line is replaced by a symmetrical one characteristic of clustered ions through dipole–dipole interactions. IR spectra of the studied glasses put in evidence a strong depolymerization effect with a gradual increase of CuO. The shift of PO asymmetric stretching vibration band to lower wave number can be explained by the increase of PO4 tetrahedra charge density leading a more ionic and less covalent bonding.  相似文献   

5.
The paper opens up a series of papers on the origin and parameters of spectral features forming the absorption of photo-thermo-refractive (PTR) glasses in the UV. Problems to be cleared for gaining further insight into the spectroscopic manifestations of species responsible for the photo-induced processes in PTR glasses are discussed. The samples of bromine-containing and bromine-free PTR glass matrices are synthesized and their absorption spectra in the 28,500 to 50,000 cm–1 region are recorded. The dispersion analysis of the spectra is conducted based on the convolution model for the complex dielectric function of glasses. The matrix electronic transitions that set the real part of the complex dielectric function and form the intrinsic absorption tail of the matrix are simulated with a series of effective oscillators. Spectral features forming the total absorption spectrum of PTR glass matrices in the 28,500 to 50,000 cm–1 region are deconvoluted. These features are (i) the intrinsic absorption tail, (ii) for the bromine-containing matrix, the low-wavenumber wing of an envelope around ~ 51,400 cm–1 covering the bromine-related spectral feature(s), (iii) Fe2+- and Fe3+-related impurity bands, and also (iv) a structureless absorption mostly due to the high-wavenumber wings of other impurity bands below 28,500 cm–1.  相似文献   

6.
X-ray absorption near edge structure spectroscopy has been used at the O K and Fe L2,3 edges to investigate the electronic and atomic structure of (Fe2O3)x(Na2O)0.30(SiO2)0.70 ? x (x < 0.2) obtained by melt-quench technique. The Fe L2,3 edge spectra show that the Fe atoms are in octahedral coordination. The O K edge spectra reveal no change in coordination of Fe and increased degree of hybridization between O 2p and Fe 3d orbitals with iron doping. It is estimated that about 10% Fe2+ and 90% Fe3+ are in these glasses by peak fitting analysis of Fe L3 edge. The ligand-field splitting of Fe 3d orbital is about 1.6 eV.  相似文献   

7.
Raman laser and far infrared spectra of As2Sx glasses with x ? 3 are given and discussed. The purpose of the work is to bring a vibrational spectroscopic contribution to the study of these glasses and to the hypothesis, still under discussion in the literature, that they might be constituted either by a homogeneous vitreous phase or by a mixture of As2S3 and As4S4.Our results confirm a phase separation, with formation of ß-As4S4, below a certain value of x, which depends not only on the preparation method of the samples but also on other factors such as melting time. Laser irradiation of ß-As4S4 modifies its Raman spectrum. Such a phenomenon is attributable to two principal factors, either a partial polymerization or formation of a species richer in arsenic. A structural and formation model of the As2Sx glasses is given, starting from a more generalized structural model of vitreous As2S3 which is an accord with the vibrational results and those by the diffraction method in the literature.  相似文献   

8.
9.
Glass samples from four systems: xPbO–(100?x)B2O3 (x = 30, 40, 50 and 60 mol%), 50PbO–yAl2O3–(50?y)B2O3 (y = 2, 4, 6, 8 mol%), 50PbO–ySiO2–(50?y)B2O3 (y = 5, 10, 20, 30 mol%) and 50PbO–5SiO2yAl2O3–(45?y)B2O3 (y = 2, 4, 6, 8 mol%) were prepared by a melt-quench technique. Characterization of these systems was carried out using density measurements, UV–visible spectroscopy, differential scanning calorimetry (DSC), and 11B and 27Al magic-angle spinning (MAS) solid-state nuclear magnetic resonance (NMR). Our studies reveal an increase in glass density with increasing lead(II) oxide concentration in pure lead borates and also with addition of silica into 50PbO–50B2O3 glass. 11B MAS NMR measurements determine that the fraction of tetrahedral borons (N4) reaches a maximum for the glass containing 50 mol% of PbO in the PbO–B2O3 glass series and that N4 is sharply reduced upon adding small amounts of Al2O3 into lead borate and lead borosilicate systems. 27Al MAS NMR experiments performed on glasses doped with aluminum oxide show that the Al3+ are tetra-, penta- and hexa-coordinated with oxygen, even without any excess concentration of Al3+ over charge-balancing Pb2+ cations. [5]Al and [6]Al concentrations are found to have unusually high values of up to 30%. The results of UV–visible absorption spectroscopy, DSC and density measurements support the conclusions drawn from the NMR studies, providing a consistent picture of structure–property relations in these glass systems.  相似文献   

10.
In this work, we report the synthesis of europium-doped phosphosilicate glasses from tetraethylorthosilicate (TEOS), phenyltrietoxysilane (PTES) and ammonium phosphate (NH4H2PO4) prepared by the sol–gel process. The matrix was synthesized by modified Stöber methodology. The alkoxide precursors PTES and TEOS were mixed with NH4H2PO4, in the presence of europium III chloride, using ethanol as solvent in basic catalysis. These materials were studied by photoluminescence spectroscopy (PL), thermal analysis (TGA/DTA), transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS). The results obtained for the materials show the formation of conchoidal-fractures, which are characteristics of glass materials. The thermal analysis showed the thermal stability of materials up to 300 °C. Eu III has been used as structural probe due to its photophysical properties. The PL spectra displays the lines characteristics of the Eu (III) ion 5D07FJ (J = 0, 1, 2, 3 and 4). Wide bands were observed, indicating non-homogeneous sites that are characteristic of amorphous systems.  相似文献   

11.
When CuAsSe glasses are irradiated, they exhibit higher concentrations of darkening than AsSe glasses. Since darkening depends on the composition, the darkening centers in CuAsSe glasses to be of the same kind as those in AsSe glasses, i.e. arsenic clusters. Concerning the kinetics of erasing, it was found that the activation energy and the rate constant of erasing in CuAsSe are almost equal to those in AsSe glasses, but for the kinetics of darkening, it was found that the activation energy of darkening is equal to that of AsSe but α0, which is proportional to the number of latent darkening centers, and the darkening rate constant k1 are about twice as high as the corresponding constants of AsSe glasses. This may be the reason for the greater darkening in CuAsSe glasses. The high value of α0 was attributed to the generation of more AsAs bonds on the addition of Cu to the AsSe glass network. The high value of k1 was attributed to the increase in efficiency of photo-decomposition because of the many impurity levels in the band gap and also because of the narrow optical energy gap in the CuAsSe glasses.  相似文献   

12.
Vickers hardness and refractive index was determined for Ca–Si–O–N glasses with 14.6–58 e/o N and 19–42 e/o Ca. By applying slow cooling rates, transparent glasses were obtained for compositions near Ca9.94Si10O17.73N8.14, while the majority of the glasses were opaque due to small inclusions of elemental Si and/or Ca-silicide. Determined glass densities varied between 2.80 and 3.25 g/cm3. Hardness was found to vary from 7.3 to 10.1 GPa at a load of 500 g and, respectively increase and decrease linearly with N and Ca content. The refractive index was found to increase linearly with N content from 1.62 to 1.95 and showed no significant dependence on Ca content.  相似文献   

13.
H.S. Chen 《Journal of Non》1973,12(3):333-338
Thermal properties of glassy PdNiP and PtNiP alloys have been measured as a function of the concentration of transition metals. The glass transiion temperature, Tg, of these alloys glasses exhibits a negative linear deviation with transition metal content - which is in contrast to the increasing Tg of binary glassy alloys with increasing metalloids.It is suggested that the suppression of the glass transition temperature of these glassy alloys may be attributed to the excess configurational entropy of disorder associated with a mixture of hard spheres differing in radius. In contrast, the increasing Tg of binary glassy alloys with the metalloid content may be associated with the short-range order resulting from strong interactions between metal and metalloid atoms.  相似文献   

14.
The effect of rare-earth elements on the plasma etching behavior of oxide glasses were investigated to develop the window glass for a plasma processing chamber in the semiconductor industry. Aluminosilicate glasses with various rare-earth elements (Y, Gd and La) were prepared and their optical transmittance and plasma etching depth were evaluated. The plasma etching behavior of the glasses was estimated by X-ray photoelectron spectroscopy analysis at the fluorine plasma exposure surface of the glasses. The rare-earth element in the glass was highly related to various properties such as density, molar volume, mechanical properties and plasma etching depth. The cationic field strength of the rare-earth element more strongly affected the plasma etching depth of the glasses than the sublimation point of the fluorine compounds and this may be related to the plasma etching condition.  相似文献   

15.
Glasses in the (Er2O3)x·(B2O3)(60 ? x)·(ZnO)40 system (0  x  15 mol%) have been prepared by the melt quenching technique. X-ray diffraction, FTIR spectroscopy, UV-VIS spectroscopy and ab initio calculations studies have been employed to study the role of Er2O3 content on the structure of the investigated glass system.X-ray diffraction and infrared spectra of the glasses reveal that the B–O–B bonds may be broken with the creation of new non-bridging oxygen ions facilitating the formation of Er–O–B linkages. The excess of oxygen can be accommodated in the network by the conversion of sp2 planar [BO3] units to the more stable sp3 [BO4] tetrahedral structural units. The linkages of the [BO4] structural units can polymerize in [B3O9]? 9 cyclic trimeric ions which will produce the ErBO3 crystalline phase. An increase of the efficiency corresponding to the 4I15/2 state to 4I11/2 state (4f–4f) transitions of Er+ 3 ions was observed for the erbium oxide richest glasses.Ab initio calculations on the structure of the matrix network show the thermodynamic instability of the [BO4], [ZnO4] and [Zn4O] structural units. Formation of three-coordination oxygens was necessary to compensate shortage of oxygens from zinc ions.  相似文献   

16.
Development of crystallization in the CaO–Al2O3–TiO2–P2O5 system glasses was investigated in the presence of ionic and metallic silver. Differential thermal analysis, X-ray diffractometry, ultra violet–visible spectrophotometry, atomic force microscopy and scanning electron microscopy were used to evaluate the resulted glasses and glass-ceramics. It was found that silver ions facilitated crystallization by decreasing the viscosity of the glasses. However, metallic silver, which was formed through heat treatment in hydrogen atmosphere, improved heterogeneous crystallization of the reduced glasses in the subsequent heat treatment. The preformed metallic silver led to effective crystallization of calcium titanium phosphate (CaTi4(PO4)6), calcium metaphosphate (Ca(PO3)2) and calcium pyrophosphate (Ca2P2O7) phases at significantly decreased temperatures. The two latter phases were partially dissolved out by leaching in acidic solution and left out a porous structure of calcium titanium phosphate glass-ceramic.  相似文献   

17.
The effects of Zn addition on the glass forming ability and mechanical properties of Mg65Cu25?xZnxTb10 (x = 0, 2.5, 5, and 7.5) have been investigated. We show that small amounts of Zn addition improve the glass forming ability, strength, and ductility of the Mg–Cu–Tb bulk metallic glass. For the best glass forming composition, amorphous rods of Mg65Cu20Zn5Tb10 with a diameter of at least 7 mm have been prepared by a conventional copper mold casting method. Additionally, this composition exhibits obvious yielding and plastic deformation upon quasi-static compressive loading. The fracture strength, total strain to failure, and the plastic strain of the Mg65Cu20Zn5Tb10 bulk metallic glass reaches 1025 MPa, 2.05% and 0.15%, respectively. This is significantly superior compared to that exhibited by the original Zn-free Mg–Cu–Tb amorphous alloy.  相似文献   

18.
In searching for new kind of photoelectric material, chalcogenide glasses in the GeS2–Sb2S3–CdS system have been studied and their glass-forming region was determined. The system has a relatively large glass-forming region that is mainly situated along the GeS2–Sb2S3 binary side. Thermal, optical and mechanical properties of the glasses were reported and the effects of compositional change on their properties are discussed. These novel chalcogenide glasses have relatively high glass transition temperatures (Tg ranges from 566 to 583 K), good thermal stabilities (the maximum of deference between the onset crystallization temperature, Tc, and Tg is 105 K), broad transmission region (0.57–12 μm) and large densities (d ranges from 2.99 to 3.34 g cm?3). These glasses would be expected to be used in the field of rare earth doped fiber amplifiers and nonlinear optical devices.  相似文献   

19.
Measurements of Kerr electrooptical sensitivity of several zinc–thallium–tellurite glasses are presented, and composition dependence of Kerr sensitivity is compared with the dependence of the second harmonic generation efficiency collected for optically poled TeO2–TlO0.5–ZnO glasses. These data being analyzed jointly with Raman measurements data allowed us to conclude that the high electrooptical Kerr coefficient and nonlinearity of Tl2O–ZnO–TeO2 glasses, and their sharp increase with augmenting concentration of thallium oxide TlO0.5 above 15% should be attributed to the presence of Tl+ cations having very high non-linear polarizability most likely related to their electronic lone pairs.  相似文献   

20.
Direct electrical conductivity and dependencies of complex electrical modulus vs. temperature and frequency have been measured on glasses from the MnF2–ZnF2–NaPO3 system. These glasses are sensitive to atmospheric humidity and as a consequence, the electrical conductivity increases up to temperature of 50 °C. A hydrated layer is created by the effect of water and leads to the significant increase of the electrical conductivity in the case of 0MnF2–20ZnF2–80NaPO3 glass. This behavior is governed by Arrhenius relation where the values of activation energy are increasing and values of the electrical conductivity are decreasing with the amount of MnF2. Dielectric measurements show that a heterogeneous phase is formed in the bulk of glasses. This may be seen when plotting complex electrical modulus in the complex plane. The records made by the light microscope confirmed the occurrence of the other phase in the bulk of glasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号