首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hydrogenated nanocrystalline silicon (nc-Si:H) thin films were produced by capacitively-coupled plasma enhanced chemical vapor deposition (PECVD) technique at low substrate temperatures (Ts ≈ 40–200 °C). Firstly, for particular growth parameters, the lowest stable Ts was determined to avoid temperature fluctuations during the film deposition. The influence of the Ts on the structural and optical properties of the films was investigated by the Fourier transform infrared (FTIR), UV–visible transmittance/reflectance and X-ray diffraction (XRD) spectroscopies. Also, the films deposited at the center of the PECVD electrode and those around the edge of the PECVD electrode were compared within each deposition cycle. The XRD and UV–visible reflectance analyses reveal the nanocrystalline phase for the films grown at the edge at all Ts and for the center films only at 200 °C. The crystallinity fraction and lateral dark conductivity decrease with lowered Ts. FTIR analyses were used to track the hydrogen content, void fraction and amorphous matrix volume fraction within the films. The optical constants obtained from the UV–visible transmittance spectroscopy were correlated well with the FTIR results. Finally, the optimal Ts was concluded for the application of the produced nc-Si:H in silicon-based thin film devices on plastic substrates.  相似文献   

2.
Investigation of passivation of porous silicon at room temperature   总被引:1,自引:0,他引:1  
A practical oxidizing technique with ozone has been developed for the passivation of porous silicon (PS) at room temperature. The fundamental role of ozonization may be attributed to the strong oxidizing process for the Si-Hx species and dangling bonds. The subsequent 158 days’ aging effect with the presence of absorbed ozone molecules is very effective for the oxidizing process. At last we achieve a complete replacing Si-Hx coverage with Si-Ox film and Si-alkyl film. The steady increase of photoluminescence (PL) intensity is assigned to the increase in the barrier’s height efficiency and the increase in quantum confinement effect for the silicon nanocrystallites.  相似文献   

3.
Porous silicon (por-Si) can be produced when silicon single crystals are submerged in fluoride solutions and irradiated with laser light. The shape of the por-Si film is determined by the laser beam intensity profile. When laser light is reflected from a Gaussian-shaped film, a divergent beam, which exhibits ring patterns, is observed. The rings are formed by a combination of optical interference and Fresnel diffraction. The size of the pattern is determined by the shape and depth of the film interfaces as well as the index of refraction of the film. The index of the film is determined by the porosity and the index of the fluid that fills the pores. We explore the application of measurements of the reflected beam patterns to the determination of porosity for por-Si thin films. We report the first direct estimation of the porosity of photochemically produced porous silicon. Porosities of 70-95% are found for n-type Si(111) etched in 48% HF with 633-nm illumination. Having demonstrated the success of this technique, we discuss improvements and extensions that can be made.  相似文献   

4.
5.
Vanadium oxide thin films on silicon (Si) substrate are grown by pulsed radio frequency (RF) magnetron sputtering technique at RF power in the range of 100–700 W at room temperature. Deposited thin films are characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) techniques to investigate microstructural, phase, electronic structure and oxide state characteristics. The reflectance and transmittance spectra of the films and the Si substrate are recorded at the solar region (200–2300 nm) of the spectral window. Substantial reduction in reflectance and increase in transmittance is observed for the films grown beyond 200 W. Further, optical constants viz. absorption coefficient, refractive index and extinction coefficient of the deposited vanadium oxide films are evaluated.  相似文献   

6.
7.
n型有序多孔硅基氧化钨室温气敏性能研究   总被引:3,自引:0,他引:3       下载免费PDF全文
胡明  刘青林  贾丁立  李明达 《物理学报》2013,62(5):57102-057102
利用电化学腐蚀方法制备了n型有序多孔硅, 并以此为基底用直流磁控溅射法在其表面溅射不同厚度的氧化钨薄膜. 利用X射线和扫描电子显微镜表征了材料的成分和结构, 结果表明, 多孔硅的孔呈柱形有序分布, 溅射10 min的WO3薄膜是多晶结构, 比较松散地覆盖在整个多孔硅的表面. 分别测试了多孔硅和多孔硅基氧化钨在室温条件下对二氧化氮的气敏性能, 结果表明, 相对于多孔硅, 多孔硅基氧化钨薄膜对二氧化氮的气敏性能显著提高. 对多孔硅基氧化钨复合结构的气敏机理分析认为, 多孔硅和氧化钨薄膜复合形成的异质结对良好的气敏性能起到主要作用, 氧化钨薄膜表面出现了反型层引起了气敏响应时电阻的异常变化. 关键词: 有序多孔硅 氧化钨薄膜 二氧化氮 室温气敏性能  相似文献   

8.
9.
The photoluminescence (PL) of the annealed and amorphous silicon passivated porous silicon with blue emission has been investigated. The N-type and P-type porous silicon fabricated by electrochemical etching was annealed in the temperature range of 700-900 °C, and was coated with amorphous silicon formed in a plasma-enhanced chemical vapor deposition (PECVD) process. After annealing, the variation of PL intensity of N-type porous silicon was different from that of P-type porous silicon, depending on their structure. It was also found that during annealing at 900 °C, the coated amorphous silicon crystallized into polycrystalline silicon, which passivated the irradiative centers on the surface of porous silicon so as to increase the intensity of the blue emission.  相似文献   

10.
The mechanism of hydrogen plasma passivation for poly-crystalline silicon (poly-Si) thin films is investigated by optical emission spectroscopy (OES) combined with Hall mobility, Raman spectra, absorption coefficient spectra, and so on. It is found that different kinds of hydrogen plasma radicals are responsible for passivating different defects in polySi. The Ha with lower energy is mainly responsible for passivating the solid phase crystallization (SPC) poly-Si whose crystallization precursor is deposited by plasma-enhanced chemical vapor deposition (PECVD). The H* with higher energy may passivate the defects related to teh Ni impurity around the grain boundaries more effectively. In addition, Hβ and H7 with the highest energy are required to passivate intra-grain defects in the poly-Si crystallized by SPC but whose precursor is deposited bv low pressure chemical vapor deposition(LPCVD)  相似文献   

11.
In the present work, ZnO was deposited on porous silicon substrates by sol-gel spin coating and rf magnetron sputtering. The porous silicon (PS) substrates were formed by electrochemical anodization on p-type (1 0 0) silicon wafer, and the starting material for ZnO was Zinc acetate dehydrate. Raman spectroscopy revealed the good quality of the porous silicon substrate. XRD analysis showed that highly (0 0 2) oriented ZnO thin films were formed. SEM, AFM and optical microscope have been used to understand the effects of the substrate on crystalline properties of the samples. The results indicated that the porous silicon substrate is beneficial to improve the crystalline quality in lattice mismatch heteroepitaxy due to its sponge-like structure.  相似文献   

12.
王东明  王德亮 《中国物理 B》2017,26(6):67503-067503
The magnetic property in a material is induced by the unpaired electrons. This can occur due to defect states which can enhance the magnetic moment and the spin polarization. In this report, CdS and CdTe thin films are grown on FTO glass substrates by chemical bath deposition and close-spaced sublimation, respectively. The magnetic properties, which are introduced from oxygen states, are found in CdS and CdTe thin films. From the hysteresis loop of magnetic moment it is revealed that CdS and CdTe thin films have different kinds of magnetic moments at different temperatures. The M–H curves indicate that from 100 K to 350 K, CdS and CdTe thin films show paramagnetism and diamagnetism, respectively.A superparamagnetic or a weakly ferromagnetic response is found at 5 K. It is also observed from ZFC/FC curves that magnetic moments decrease with temperature increasing. Spin polarized density functional calculation for spin magnetic moment is also carried out.  相似文献   

13.
14.
Porous silicon (PS) was passivated by silica film using a sol-gel method; the photoluminescence (PL) properties were significantly improved; namely, PL intensity and stability increased and PL peak shifted to shorter wavelength. Scanning electron microscope (SEM) and Fourier transformed infrared spectroscope (FTIR) results indicated that silica passivation produced a compact film on the PS surface and modified the surface state of PS. The number of stable surface bonds (HSiO3, HSiSiO2 and H2SiO2) increased due to the oxidation of SiH back-bonds during the gelation process, and thus the PL intensity and stability were improved. Moreover, the blue-shift of PL peak was determined due to the increase in the ratio of SiO/SiH.  相似文献   

15.
The optical transmission of CoSi2 films of thickness 2.6–15 nm is measured in the wavelength range 1–20 m. The optical constants are evaluated by taking into account multiple reflections in the film and by fitting a Drude model. The plasma frequency p=5.4–7.6 eV is equivalent to a carrier density n eff=3×1022 cm–3 and one carrier per unit cell. The relaxation frequency of the plasma resonance assumes high values =2 eV near the interface to silicon and decreases into the bulk film over several nanometers. Films grown off-axis from the (111) Si orientation exhibit an enhanced relaxation frequency.  相似文献   

16.
Al or Sn doped ZnO films were deposited by spray pyrolysis using aqueous solutions. The films were deposited on either indium tin oxide coated or bare glass substrates. ZnCl2, AlCl3 and SnCl2 were used as precursors. The effect of ZnCl2 molar concentration (0.1-0.3 M) and doping percentage (2-4% AlCl3 or SnCl2) have been investigated. The main goal of this work being to grow porous ZnO thin films, small temperature substrates (200-300 °C) have been used during the spray pyrolysis deposition. It is shown that, if the X-ray diffraction patterns correspond to ZnO, the films deposited onto bare glass substrate are only partly crystallized while those deposited onto ITO coated glass substrate exhibit better crystallization. The homogeneity of the films decreases when the molar concentration of the precursor increases, while the grain size and the porosity decrease when the Al doping increases. The optical study shows that band tails are present in the absorption spectrum of the films deposited onto bare glass substrate, which is typical of disordered materials. Even after annealing 4 h at 400 °C, the longitudinal resistivity of the films is quite high. This result is attributed to the grain boundary effect and the porosity of the films. Effectively, the presence of an important reflection in the IR region in samples annealed testifies of a high free-carriers density in the ZnO crystallites. Finally it is shown that when deposited in the same electrochemical conditions, the transmission of a polymer film onto the rough sprayed ZnO is smaller than that onto smooth sputtered ZnO.  相似文献   

17.
Boron-doped nanocrystalline silicon thin films for solar cells   总被引:1,自引:0,他引:1  
This article reports on the structural, electronic, and optical properties of boron-doped hydrogenated nanocrystalline silicon (nc-Si:H) thin films. The films were deposited by plasma-enhanced chemical vapour deposition (PECVD) at a substrate temperature of 150 °C. Crystalline volume fraction and dark conductivity of the films were determined as a function of trimethylboron-to-silane flow ratio. Optical constants of doped and undoped nc-Si:H were obtained from transmission and reflection spectra. By employing p+ nc-Si:H as a window layer combined with a p′ a-SiC buffer layer, a-Si:H-based p-p′-i-n solar cells on ZnO:Al-coated glass substrates were fabricated. Device characteristics were obtained from current-voltage and spectral-response measurements.  相似文献   

18.
An alumina suspension containing 21 vol.% solids was made to flow through a needle at rates between 10-12–10-11 m3s-1 and was subjected to electrostatic atomization at different applied voltages in the range 5–13 kV. The resulting modes of atomization were studied. The stable cone-jet mode was first obtained at 7 kV and 2.2×10-12 m3s-1 and the effect of increasing flow rate and applied voltage on the jet diameter was investigated. Using a pointed ground electrode the alumina droplets produced by the jet in the stable cone-jet mode were printed according to a pre-determined architecture. Alumina relic diameters in the print were <35 m. PACS 81.05.Je; 81.20.Ev; 81.20.Rg; 81.15.Pq; 47.27.Wg  相似文献   

19.
U. Tritthart  W. Gey  A. Gavrilyuk 《Ionics》1998,4(3-4):299-308
The nature of the optical absorption band arising in amorphous MoO3 and WO3 films on insertion of hydrogen atoms was investigated carrying out this process over a wide temperature range. Hydrogen atoms were inserted in oxide films detached under the action of light from organic molecules adsorbed on the oxide surface. The absorption spectra were successfully fitted with three Gaussian functions each being assigned to the definite type of color centers. Paper presented at the 5th Euroconference on Solid State Ionics, Benalmádena, Spain, Sept. 13–20, 1998.  相似文献   

20.
Photoluminescence spectra of thin hydrogenated-silicon films having mixed amorphous-nanocrystalline phase composition have been studied. Fabry-Perot interference was found to affect strongly the shape of the spectra. An analysis of the spectra made with inclusion of interference corrections shows that only one emission band forms in the 0.6–1.0 μm region due to carrier recombination at centers of the same type. Fiz. Tverd. Tela (St. Petersburg) 41, 153–158 (January 1999)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号