首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe hidden symmetry and its application to the construction of exact correlated states of electrons and holes in quantum dots. The hidden symmetry is related to degenerate single particle energy shells and symmetric interactions. Both can be engineered in a quantum dot. We focus on hidden symmetry involving spin singlet pairing of electrons and spin singlet pairing of holes. Detailed calculations for a third shell are presented to illustrate the mechanism of pairing.  相似文献   

2.
3.
By embedding a layer of self-assembled quantum dots into a field-effect structure, we are able to control the exciton charge in a single dot. We present the results of photoluminescence experiments as a function of both charge and magnetic field. The results demonstrate a hierarchy of energy scales determined by quantization, the direct Coulomb interaction, the electron–electron exchange interaction, and the electron–hole exchange interaction. For excitons up to the triply charged exciton, the behavior can be understood from a model assuming discrete levels within the quantum dot. For the triply charged exciton, this is no longer the case. In a magnetic field, we discover a coherent interaction with the continuum states, the Landau levels associated with the wetting layer.  相似文献   

4.
5.
The influence of isolated impurity atoms on the electron energy spectrum in a parabolic quantum dot in quantizing magnetic field is studied. The impurity potential is approximated by a Gaussian separable operator which allows one to obtain the exact solution of the problem. We demonstrate that in the electron energy spectrum there is a set of local levels which are split from the Landau zone boundaries in the upward or downward direction depending on the impurity type. We have calculated the local level positions, the wave functions of electrons in bound states, and the residues of the electron scattering amplitudes by impurity atoms at the poles.  相似文献   

6.
《Physics letters. A》2001,289(3):155-159
The ground states of N-electron parabolic quantum dots in the presence of a perpendicular magnetic field are investigated. Rigorous lower bounds to the ground-state energies are obtained. It is shown that our lower bounds agree well with the results of exact diagonalization. Analytic results for the lower bounds to the ground-state energies of the quantum dots in a strong magnetic field (known as electron molecule) agree very well with numerically calculated lower bounds.  相似文献   

7.
The effects of direct Coulomb and exchange interactions on spin states are studied for quantum dots contained in circular and rectangular mesas. For a circular mesa a spin-triplet favored by these interactions is observed at zero and nonzero magnetic fields. We tune and measure the relative strengths of these interactions as a function of the number of confined electrons. We find that electrons tend to have parallel spins when they occupy nearly degenerate single-particle states. We use a magnetic field to adjust the single-particle state degeneracy, and find that the spin-configurations in an arbitrary magnetic field are well explained in terms of two-electron singlet and triplet states. For a rectangular mesa we observe no signatures of the spin-triplet at zero magnetic field. Due to the anisotropy in the lateral confinement single-particle state degeneracy present in the circular mesa is lifted, and Coulomb interactions become weak. We evaluate the degree of the anisotropy by measuring the magnetic field dependence of the energy spectrum for the ground and excited states, and find that at zero magnetic field the spin-singlet is more significantly favored by the lifting of level degeneracy than by the reduction in the Coulomb interaction. We also find that the spin-triplet is recovered by adjusting the level degeneracy with magnetic field. Received: 14 April 2000 / Accepted: 17 April 2000 / Published online: 6 September 2000  相似文献   

8.
9.
Numerical calculations are shown to reproduce the main results of recent experiments involving nonlocal spin control in quantum dots [Craig, Science 304, 565 (2004).]. In particular, the experimentally reported zero-bias-peak splitting is clearly observed in our studies. To understand these results, a simple "circuit model" is introduced and shown to qualitatively describe the experiments. The main idea is that the splitting originates in a Fano antiresonance, which is caused by having one quantum dot side connected in relation to the current's path. This scenario provides an explanation of the results of Craig et al. that is an alternative to the RKKY proposal, also addressed here.  相似文献   

10.
This paper presents a new model for the Internet graph (AS graph) based on the concept of heuristic trade-off optimization, introduced by Fabrikant, Koutsoupias and Papadimitriou in [5] to grow a random tree with a heavily tailed degree distribution. We propose here a generalization of this approach to generate a general graph, as a candidate for modeling the Internet. We present the results of our simulations and an analysis of the standard parameters measured in our model, compared with measurements from the physical Internet graph.Received: 9 February 2004, Published online: 14 May 2004PACS: 89.75.-k Complex systems - 89.75.Hc Networks and genealogical trees - 89.75.Da Systems obeying scaling laws - 89.75.Fb Structures and organization in complex systems - 89.65.Gh Economics; econophysics, financial markets, business and managementLRI: http: //www.lri.fr/~ihameli; CNRS, LIP, ENS Lyon : http: //www.ens-lyon.fr/~nschaban  相似文献   

11.
王保传  陈明博  曹刚  郭国平 《物理》2018,47(11):725-730
文章介绍了半导体新型量子比特——杂化量子比特。通过与半导体量子点中自旋量子比特和电荷量子比特进行比较,阐述了杂化量子比特兼具长相干与快操控的优点。在总结了杂化量子比特发展与现状的基础上,进一步简单介绍了中国科学技术大学中国科学院量子信息重点实验室在改进型杂化量子比特方面的工作成果。  相似文献   

12.
A theory of resonant optical breathers in the presence of single and biexciton transitions in an ensemble of inhomogeneously broadened semiconductor quantum dots is constructed. Explicit analytical expressions for the breather shape and parameters for experimental investigations are proposed.  相似文献   

13.
A theory of an optical vector soliton of self-induced transparency in an ensemble of semiconductor quantum dots is considered. By using the perturbative reduction method, the system of the Maxwell–Liouville equations is reduced to the two-component coupled nonlinear Schrödinger equations. It is shown that a distribution of transition dipole moments of the quantum dots and phase modulation changes significantly the pulse parameters. The shape of the optical two-component vector soliton with the sum and difference of the frequencies in the region of the carrier frequency is presented. The vector soliton can be reduced to the breather solution of self-induced transparency with a different profile. Explicit analytical expressions in the presence of single-excitonic and biexcitonic transitions for the optical vector soliton are obtained with realistic parameters which can be reached in current experiments.  相似文献   

14.
The discretization of the electronic spectrum in semiconductor quantum dots implies a strong coupling behavior between the optical phonons and the electron-hole pairs, despite the fact that a pair is electrically neutral. The excitonic polarons strongly modify the optical spectra. In particular, the ground excitonic polaron contains one or two phonon components, which leads to the existence of phonon replicas in the luminescence. The population and coherence decay times of the optical transition associated with the ground excitonic polaron are calculated.  相似文献   

15.
16.
In this paper, we explore the size- and mass-dependent energy spectra and the electronic correlation of two- and three-electron graphene magnetic quantum dots. It is found that only the magnetic dots with large size can well confine the electrons. For large graphene magnetic dots with massless (ultra-relativity) electrons, the energy level structures of two Dirac electrons and even the ground state spin and angular momentum of three electrons are quite different from those of the usual semiconductor quantum dots. Also we reveal that such differences are not due to the magnetic confinement but originate from the character of the Coulomb interaction of two-component electronic wavefunctions in graphene. We reveal that the increase of the mass leads to both the crossover of the energy spectrum structures from the ultra-relativity to non-relativity ones and the increasing of the crystallization. The results are helpful for the understanding of the mass and size effects and may be useful in controlling the few-electron states in graphene-based nanodevices.  相似文献   

17.
The bound states of plasmons, of phonons and of coupled plasmon-phonon modes at neutral donors in semiconductor quantum well systems have been studied here. The interaction of plasmon-phonon excitations, which are important in compound semiconductor systems, with electrons, and the coupling of plasmons with electrons have been derived in the long wave length limit of the Random Phase approximation. These interactions are used to derive expressions for the binding energies of the collective excitations to neutral donors. The dependence of the binding energy of the coupled plasmon-phonon modes on the well width of quantum wells is found to be particularly rich. The present results are in generally good accord with available experimental data for quantum well systems.  相似文献   

18.
Coherent spectroscopy of semiconductor quantum dots, such as photon echo, accumulated photon echo, interferometric coherency measurement, quantum beat and coherent phonon measurement, are reviewed in relation to the historical progress in the coherent spectroscopy of semiconductors.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号