首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The rapid quenching processes of a larger-scale Al50Mg50 alloy system consisting of 100,000 atoms have been simulated by using molecular dynamics method. The formation and structure of short-range order (SRO) and medium-range order (MRO) in the rapidly quenched Al50Mg50 alloy are investigated by means of several structural analysis methods. It is found that the massive icosahedra in the Al50Mg50 supercooled liquid prevent it from crystallizing and play a critical role in the formation of metallic glass. The SRO in Al50Mg50 metallic glass cannot be modeled by a uniquely prescribed stereo-chemical structure or five Bernal polyhedra, but various types of basic clusters in which the icosahedron is dominant. The MRO is characterized by some certain types of extended icosahedral clusters combined by intercross-sharing atoms in the form of chains or rings, which is different from the FCC and icosahedral building schemes for the MROs in metallic glasses with significant chemical SRO. The size distributions of these MRO clusters exhibit a magic number sequence of 19, 23, 25, 27, 29, 31, 33, 35, 37, 41….  相似文献   

2.
S.P. Pan  J.Y. Qin  W.M. Wang  T.K. Gu 《Journal of Non》2012,358(15):1873-1875
A new method was proposed to describe cluster packing in metallic glasses. This method has no limitation of solute concentration and characterizes cluster packing by Voronoi polyhedron. The application of this method to Cu64Zr36 metallic glass indicates that most of the styles of cluster packing have the preference of fivefold local environment but not a face-centered-cubic or an icosahedral packing. The linear correlation between the coordinate number and the average number of adjust clusters might give an indication of the fractal nature of medium range order in metallic glasses.  相似文献   

3.
X. Zhou  H.C. Kou  J. Wang  J.S. Li  L. Zhou 《Journal of Non》2011,357(16-17):3049-3052
The homogeneous flow exhibits strain softening for Ti40Zr25Ni8Cu9Be18 bulk metallic glass, which is related to increase in free volume concentration based on free volume model. When metallic glass is pre-annealed above Tg before deformation, the trend of strain softening becomes slow with pre-annealing time, indicating that the enthalpy recovery contributes to strain softening, because the enthalpy of metallic glass will recover towards equilibrium value above Tg, and leads to increase in free volume concentration. So the strain softening for Ti40Zr25Ni8Cu9Be18 bulk metallic glass is related to enthalpy recovery.  相似文献   

4.
《Journal of Non》2005,351(46-48):3587-3592
In order to investigate the structural evolution around Al, pulse NMR experiments were carried out on 27Al in the Zr60Ni25Al15 metallic glass and the related crystalline compound, Zr6NiAl2. Different chemical shift peaks were observed around 2750 and 3000 ppm in the as-quenched Zr60Ni25Al15 and crystalline compound, Zr6NiAl2, respectively. Considering that the capped triangular prism of Zr9Al3 is formed around Al in the Zr6NiAl2 crystal, chemical correlation pairs of Al–Zr and/or Al–Al are fairly faint while that of Al–Ni may be dominant instead in the as-quenched state. These results suggest an inhomogenous chemical bonding nature in the Zr60Ni25Al15 metallic glass. The resonant peaks around 3000 ppm, which were distinctive in the Zr6NiAl2 crystal, appeared and became stronger upon crystallization through the relaxed state. Thus, drastic change in the local atomic configuration around Al was confirmed so as to form the unlike chemical correlation pairs of Al–Zr upon crystallization. The high glass-forming ability of the Zr60Ni25Al15 metallic glass should be attributed to the difficulties of significant atomic redistribution of the constituents around Al.  相似文献   

5.
Zr70Cu30, Zr70Cu20Co10, Zr70Cu20Rh10 and Zr70Cu20Ir10 glassy alloys were prepared by the single roller melt-spinning method and the crystallization process was studied by differential scanning calorimetry, X-ray diffraction and transmission electron microscopy, with an emphasis on the initial stage. The Zr70Cu30 metallic glass crystallizes through the direct precipitation of the stable crystalline phase from the matrix. The addition of Co, Rh and Ir to the Zr70Cu30 metallic glass induces the precipitation of metastable phases prior to the formation of the stable ones. The metastable phases are a Ti2Ni-type compound for Zr70Cu20Co10, a mixture of the Ti2Ni-type compound and an icosahedral quasicrystalline phase (I-phase) for Zr70Cu20Rh10, and the I-phase for Zr70Cu20Ir10 metallic glasses. The different effects of Co, Rh and Ir addition are explained based on their difference in atomic radius.  相似文献   

6.
H.C. Kou  J. Wang  H. Chang  B. Tang  J.S. Li  R. Hu  L. Zhou 《Journal of Non》2009,355(7):420-2594
The isochronal crystallization kinetics of the Ti40Zr25Ni8Cu9Be18 metallic glass has been investigated by differential scanning calorimetry (DSC). Results indicate that the two crystallization events of this metallic glass cannot be well-described by the classic Johnson-Mehl-Avrami (JMA) kinetic equation. The kinetic equation considering the impingement effect has been found more applicable for describing the isochronal crystallization kinetics of this amorphous alloy. Accurate values of kinetic parameters were determined by fitting the theoretical DSC data to experimental curves. The kinetic parameters change in different crystallization stages and show strong heating rate dependence. Reasons of the deviation from the JMA kinetics for the isochronal crystallization of Ti40Zr25Ni8Cu9Be18 metallic glass were discussed.  相似文献   

7.
The activation free energy spectra for isoconfigurational flow of Al20Cu25Zr55,Cu40Zr60, Cu56Zr44, Cu60Zr40, and Pd80Si20 have been measured in experiments of recovery creep at stepwise increasing temperatures performed on structurally stabilized specimens that have been previously mechanically polarized by creep over a long period of time at Tg ? 150 K, followed by freezing under stress to 220 K and removal of stress. The spectra are continuous functions rising sharply from very low values at about 20 K cal mol?1 to peak cut-off values at the activation energy for steady state isostructural viscous flow at about 45–55 K cal mol?1. The shapes of these spectra resemble mirror images of the cavity size distributions computed for hard sphere models of glasses and the known free area distributions in glassy rafts of soap bubbles, and suggest the existence of a direct mapping between them. A small low temperature peak at about 22–25 K cal mol?1 has been observed in Cu56Zr44 and Cu60Zr40.  相似文献   

8.
Recently, a series of quaternary Zr-based bulk metallic glasses (BMGs), i.e., Zr53Cu18.7Ni12Al16.3, Zr51.9Cu23.3Ni10.5Al14.3 and Zr50.7Cu28Ni9Al12.3, have been developed and their glass-forming ability (GFA) increases with Cu concentration. In this work, atomic structures of the three BMGs were rebuilt by reverse Monte Carlo simulations based on the reduced pair distribution functions measured by high energy X-ray diffraction. The results show that a certain amount of substitution of short Zr-Cu, Cu-Cu pairs with long Zr-Zr and Zr-Al pairs enhances the local denser packing of Kasper polyhedral centered by Zr and Al atoms. A cell sub-divided method is proposed to describe the fluctuation of local number density which is found to follow the normal distribution function. The largest possible free volume in the three alloys is found to approaches to 3.8 Å. For the three alloys, the enhancement of GFA with increasing Cu content is due to the increase in the fluctuation degree of local density instead of the dense packing.  相似文献   

9.
N.A. Mauro  K.F. Kelton 《Journal of Non》2012,358(23):3057-3059
The medium range order (MRO) in containerless-processed Zr-noble metal eutectic liquids has been measured using the Beamline Electrostatic Levitation (BESL) technique. High energy X-ray diffraction data were obtained for equilibrium and supercooled Zr75.5Pd24.5 and Zr80Pt20; Zr77Rh23 and Zr82Ir18; and Zr81Au19 liquids. When Zr is alloyed with 5d transition metals (Ir, Pt, Au) a prominent pre-peak in the X-ray static structure factor appears, indicating the presence of extended order. However, the position of the pre-peak is not consistent with size considerations alone. Given the similarities between the 4d and 5d alloying elements in atomic size and enthalpy of mixing with Zr, extended MRO likely exists in all of the compositions studied.  相似文献   

10.
In the present paper, crystallization behavior and glass forming ability (GFA) of Cu64Zr36 bulk metallic glass (BMG) were studied based on the crystal phase competition. Electrical resistivity and X‐ray diffraction results indicate that Cu64Zr36 glass underwent a two‐stage crystallization process, during which Cu10Zr7 and Cu51Zr14 crystals precipitate at first and then there are only Cu10Zr7 and Cu8Zr3 phases at the end of the second stage. Intriguingly, it was found that it is the competing phase Cu10Zr7 that weakens GFA of the Cu64Zr36 alloy, because the Cu10Zr7 precipitate is fully restrained in the cast rod when substituting Zr with 7.5at%Ti and thereby its diameter with fully amorphous structure is enlarged from 1 mm to 2 mm.  相似文献   

11.
《Journal of Non》2006,352(30-31):3196-3199
The expressions for the phonon frequencies of Zr55Cu30Al10Ni15 bulk metallic glass employing a simple model given by Bhatia and Singh for a hypothetical one-component metallic glass are derived both for longitudinal and transverse modes of excitations. The model assumes a central force, effective between the nearest neighbours, and a volume dependent force. Both types of excitations of phonons are computed for the Zr55Cu30Al10Ni15 bulk metallic glass for the first time both for self-consistent screening of conduction electrons with and without the inclusion of correlation effects. Phonon frequency expressions reproduce the main characteristic features of the dispersion curves. The theoretical results predicted are in a good agreement with available experimental data of different quaternary bulk metallic glasses having same constituents. These are also compared to the theoretical results of a quaternary glass to have an insight of the structural behavior of the glass under consideration.  相似文献   

12.
J.C. Qiao 《Journal of Non》2011,357(14):2590-2594
Crystallization transformation kinetics in isothermal and non-isothermal (continuous heating) modes were investigated in Cu46Zr45Al7Y2 bulk metallic glass by differential scanning calorimetry (DSC). In isochronal heating process, activation energy for crystallization at different crystallized volume fraction is analyzed by Kissinger method. Average value for crystallization in Cu46Zr45Al7Y2 bulk metallic glass is 361 kJ/mol in isochronal process. Isothermal transformation kinetics was described by the Johnson-Mehl-Avrami (JMA) model. Avrami exponent n ranges from 2.4 to 2.8. The average value, around 2.5, indicates that crystallization mechanism is mainly three-dimensional diffusion-controlled. Activation energy is 484 kJ/mol in isothermal transformation for Cu46Zr45Al7Y2 bulk metallic glass. These different results were discussed using kinetic models. In addition, average activation energy of Cu46Zr45Al7Y2 bulk metallic glass calculated using Arrhenius equation is larger than the value calculated by the Kissinger method in non-isothermal conditions. The reason lies in the nucleation determinant in the non-isothermal mode, since crystallization begins at low temperature. Moreover, both nucleation and growth are involved with the same significance during isothermal crystallization. Therefore, the energy barrier in isothermal annealing mode is higher than that of isochronal conditions.  相似文献   

13.
The crystallization of amorphous Cu60Zr40 prepared by magnetron sputter deposition was studied by differential scanning calorimetry, X-ray diffraction and transmission electron microscopy. Calorimetric results were similar to those reported in the literature for liquid-quenched Cu60Zr40, including the manifestation of a glass transition. Crystallization above and below the glass transition temperature, Tg, occurred by nucleation and growth of the equilibrium phase, Cu10Zr7. This phase was characterized by convergent beam electron diffraction. With isothermal annealing below Tg, the time scale for crystallization indicated that the vapor-quenched alloy was kinetically more stable than the liquid-quenched alloy. This was interpreted as a difference in the quenched-in structures, produced by the different synthesis methods. During longer anneals, TEM analysis indicated that the structure was being contaminated by oxygen.  相似文献   

14.
Ni–Ta bulk metallic glass (BMG) with compositions around Ni60Ta40 is a newly found binary BMG with high glass forming ability and extraordinary mechanical strength. Using ab initio molecular dynamics, the local atomic structure, elastic properties and electronic structures of Ni60Ta40 glass have been explored. The pair-correlation functions, coordination numbers, and chemical compositions of the most abundant local clusters have been analyzed. We demonstrated the existence of icosahedral Ni7Ta6 clusters as the major Ni-centered clusters, while the most popular Ta-centered cluster is Ta7Ni8. These findings agree with our previous cluster model of Ni–Ta binary BMG. The elastic moduli of Ni60Ta40 glass were also computed and the experimental Young's modulus is well reproduced. Analysis of electronic structures further revealed that the interaction between d electrons of Ni and Ta atoms is responsible for the experimentally observed ultrahigh mechanical strength for the Ni–Ta BMGs.  相似文献   

15.
Chun-Li Dai  Yi Li 《Journal of Non》2008,354(31):3659-3665
A new composition region of bulk metallic glass formation, around Cu52Zr40Ti8, was discovered in the Cu-Zr-Ti ternary system, for which monolithic bulk metallic glass rods of 4 mm in diameter can be fabricated using copper mold casting. The solidification of the Cu52Zr40Ti8 deeply-undercooled liquid mainly undergoes a univariant eutectic reaction, (L → Cu10Zr7 + CuZr), even though this composition was predicted to be a ternary eutectic point (L → Cu10Zr7 + CuZr + Cu2ZrTi) by CALPHAD calculations. With respect to the deep-eutectic reaction of (L → Cu10Zr7 + CuZr) in the Cu-Zr binary alloys, alloying of Ti has a significant effect on further stabilizing the liquid, as indicated as a drop of the univariant eutectic groove, limiting the coupled growth of two crystalline phases, hence increasing the glass-forming ability.  相似文献   

16.
In this paper, the effects of annealing and nanocrystallization on the mechanical properties of a Zr55Al10Ni5Cu30 metallic glass have been studied. It has been shown that the high volume fractioned nanocrystals facilitate the formation of shear bands and thus decrease the yield stress. At the same time, the nanocrystals also facilitate the formation of interfacial voids during compression, resulting in substantial decrease in the plasticity of the metallic glass.  相似文献   

17.
J.M. Pelletier 《Journal of Non》2008,354(31):3666-3670
The effect of an annealing at a temperature above or below the glass transition temperature in a Zr41.2Ti13.8Cu125Ni10.0Be22.5 bulk metallic glass was investigated using dynamic mechanical analysis. Structural relaxation influences both the storage modulus (elastic component) and the loss modulus (viscoelastic component). Kinetics can be captured by a stretched exponential relaxation function. Experimental results are correctly described using a physical model based on the concept of defects for the mechanical response of amorphous materials and especially for the characteristic time relative to atomic mobility.  相似文献   

18.
Metallic glass microstructures with high aspect ratios for micro-electro-mechanical system applications have been fabricated by micro-electro-discharge machining and selective electrochemical dissolution methods. Micro-holes and three-dimensional microstructures machined on the La62Al14Ni12Cu12, Zr55Al10Ni5Cu30 and Cu46Zr44Al7Y3 bulk metallic glasses by micro-electro-discharge machining are evaluated by using X-ray diffraction, scanning electron microscopy, and nanoindentation. The experimental results demonstrate that the machined samples kept their amorphous structure without devitrification, and their machining characteristics are related to the thermo-physical properties of the alloys and the electrode diameters. Porous, single-pore and thin-walled Zr-based metallic glass tubes with micro-pore structures can be prepared by selective electrochemical dissolution method. The high aspect ratio microstructures fabricated by the two methods have the potential applications as micro-nozzles, polymer micro-injection molding tools, micro-channels or micro-flow meters in micro-electro-mechanical system devices.  相似文献   

19.
Structural relaxation phenomena associated with heat treatments near the glass transition temperature range were investigated in liquid-quenched amorphous Cu40Zr60 alloys by means of differential scanning calorimetry (DSC), small angle X-ray scattering (SAXS) and EXAFS. A kinetic study was performed by DSC in order to determine the evolution of the configurational enthalpy (3 Hσ) against temperature (upon continuous heating or during isothermal annealing treatments) and to define the heat treatment suitable to obtain highly relaxed samples.SAXS results show that the structure of the relaxed samples remains homogeneous at the intermediate range of order up to at least 100 Å, whatever be the previous heat treatment. EXAFS detects a slight change in the local structure only for the most highly relaxed samples; this change could be interpreted by a variation of 0.5 atom in the coordination numbers (probably of the ZrZr pairs) or by a change of the disorder parameter of about 0.01 Å.No phase separation is detected in the relaxed amorphous Cu40Zr60 specimens.  相似文献   

20.
《Journal of Non》2007,353(32-40):3177-3181
The atomic dynamics in two (bulk) metallic glasses, Ni40Pd40P20 and Zr55Cu30Al10Ni5, were investigated by neutron inelastic scattering in different regions of the potential energy landscape, which are reached by slow cooling the bulk glasses and by hyper-quenching the same alloys. The results prove that the atomic dynamics depends also on the fictive temperature, i.e. the region of the potential energy surface, in which the glass is frozen in. Obviously the shapes of the basins or inherent structures are not the same everywhere on the potential energy surface, and the glass with a higher fictive temperature has more low energy modes than has the same glass with a lower fictive temperature. As results from computer simulation have suggested already, on moving to regions of lower mean potential energy (aging), part of theses low energy modes are transferred to the energy region of the calculated Debye cut-off energy. The difference between the vibrational entropies, calculated from the generalized vibrational density-of-states, which have been determined for both fictive temperatures, shows that the contribution from the vibrational entropy to the total entropy change, when moving through the potential energy landscape, is small for the two metallic glasses investigated. Structural relaxation of the hyper-quenched glass removes part of the additional low energy modes, but quantitatively possibly only at the low and perhaps also at the high-energy limit of the density-of-states. The wavelength dependence of the dynamics suggests that the additional low energy modes in the glass with the higher fictive temperature are not dominated by extended but more likely by localized modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号