首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have used cross-sectional scanning-tunneling microscopy (X-STM) to compare the formation of self-assembled InAs quantum dots (QDs) and wetting layers on AlAs (1 0 0) and GaAs (1 0 0) surfaces. On AlAs we find a larger QD density and smaller QD size than for QDs grown on GaAs under the same growth conditions (500 °C substrate temperature and 1.9 ML indium deposition). The QDs grown on GaAs show both a normal and a lateral gradient in the indium distribution whereas the QDs grown on AlAs show only a normal gradient. The wetting layers on GaAs and AlAs do not show significant differences in their composition profiles. We suggest that the segregation of the wetting layer is mainly strain-driven, whereas the formation of the QDs is also determined by growth kinetics. We have determined the indium composition of the QDs by fitting it to the measured outward relaxation and lattice constant profile of the cleaved surface using a three-dimensional finite element calculation based on elasticity theory.  相似文献   

2.
We describe fabrication methods of GaAs and InAs quantum dot (QD) structures and related semiconductor nanostructures having nanoscale heterointerfaces grown by the selective area metalorganic vapor-phase epitaxial (SA-MOVPE) method on partially masked GaAs substrates. GaAs QD arrays and wire–dot coupled structures having strong lateral confinement were fabricated on appropriately designed masked substrates. InAs QDs were also formed on various kinds of GaAs pyramidal and wire structures, where site-selective formation is demonstrated by the combination of self-assembling growth mode and selective area growth. The application of QDs to single-electron transistors using SA-MOVPE is also described.  相似文献   

3.
Efficient generation of polarized single photons or entangled photon pairs is crucial for the implementation of quantum key distribution (QKD) systems. Self organized semiconductor quantum dots (QDs) are capable of emitting on demand one polarized photon or an entangled photon pair upon current injection. Highly efficient single‐photon sources consist of a pin structure inserted into a microcavity where single electrons and holes are funneled into an InAs QD via a submicron AlOx aperture, leading to emission of single polarized photons with record purity of the spectrum and non‐classicality of the photons. A new QD site‐control technique is based on using the surface strain field of an AlOx current aperture below the QD. GaN/AlN QD based devices are promising to operate at room temperature and reveal a fine‐structure splitting (FSS) depending inversely on the QD size. Large GaN/AlN QDs show disappearance of the FSS. Theory also suggests QDs grown on (111)‐oriented GaAs substrates as source of entangled photon pairs.  相似文献   

4.
This study describes the origin of the size and shape anisotropy of InAs/InP(0 0 1) quantum dots (QDs) grown by metalorganic vapor phase epitaxy (MOVPE). The geometry of the QDs is determined by carefully analyzing transmission electron microscopy (TEM) images. An analytical model adapted to our QD geometry is used to understand the formation mechanism of the QDs, and to describe the origin of their size dispersion. A shape transition from QDs to elongated quantum sticks (QS) is observed under As-poor growth conditions. This transition, driven by thermodynamics, is clearly described by our model.  相似文献   

5.
Coherent InAs islands separated by GaAs spacer (d) layers are shown to exhibit self-organized growth along the vertical direction. A vertically stacked layer structure is useful for controlling the size distribution of quantum dots. The thickness of the GaAs spacer has been varied to study its influence on the structural and optical properties. The structural and optical properties of multilayer InAs/GaAs quantum dots (QDs) have been investigated by atomic force microscopy (AFM), transmission electron microscopy (TEM), and photoluminescence (PL) measurements. The PL full width at half maximum (FWHM), reflecting the size distribution of the QDs, was found to reach a minimum for an inter-dots GaAs spacer layer thickness of 30 monolayers (ML). For the optimized structure, the TEM image shows that multilayer QDs align vertically in stacks with no observation of apparent structural defects. Furthermore, AFM images showed an improvement of the size uniformity of the QDs in the last layer of QDs with respect to the first one. The effect of growth interruption on the optical properties of the optimized sample (E30) was investigated by PL. The observed red shift is attributed to the evolution of the InAs islands during the growth interruption. We show the possibility of increasing the size of the QDs approaching the strategically important 1.3 m wavelength range (at room temperature) with growth interruption after InAs QD deposition.  相似文献   

6.
尚向军  马奔  陈泽升  喻颖  查国伟  倪海桥  牛智川 《物理学报》2018,67(22):227801-227801
介绍了自组织量子点单光子发光机理及器件研究进展.主要内容包括:半导体液滴自催化外延GaAs纳米线中InAs量子点和GaAs量子点的单光子发光效应、自组织InAs/GaAs量子点与分布布拉格平面微腔耦合结构的单光子发光效应和器件制备,单量子点发光的共振荧光测量方法、量子点单光子参量下转换实现的纠缠光子发射、单光子的量子存储效应以及量子点单光子发光的光纤耦合输出芯片制备等.  相似文献   

7.
We have investigated the growth-temperature, TG, dependence of the electronic properties of single self-assembled InAs quantum dots (QDs) coupled to nanogap metallic electrodes. The orbital quantization energies of QDs and the tunnel resistances exhibited strong TG-dependence due to In-Ga intermixing during QD formation. It was found that the transparency of the tunnel junctions is controllable over a very wide range by simply changing the size and the growth temperature of QDs. By realizing strong QD-electrodes coupling, very high Kondo temperature TK∼80 K was observed in our InAs QD system.  相似文献   

8.
We perform experimental and theoretical studies of the electronic structure and relaxation processes in pyramid shaped InAs/GaAs quantum dots (QDs), grown by molecular beam epitaxy in the Stranski-Krastanow growth mode. Structural properties are characterized with plan view and cross section transmission electron microscopy.Finite difference calculations of the strain and the 3D Schrödinger equation, taking into account piezoelectric and excitonic effects, agree with experimental results on transition energies of ground and excited states, revealed in luminescence and absorption spectra. We find as relative standard deviation of the size fluctuation ξ=0.04; the pyramid shape fluctuates between {101} and {203} side facets.Carrier capture into the QD ground state after carrier excitation above barrier is a very efficient process. No luminescence from excited states is observed at low excitation density. Energy relaxation processes in the zero-dimensional energy states are found to be dominated by phonon energy selection rules. However, multi-phonon emission (involving GaAs barrier, InAs wetting layer, InAs QD and interface modes) allows for a large variety of relaxation channels and thus a phonon bottleneck effect does not exist here.  相似文献   

9.
We investigate the effects of a thin AlAs layer with different position and thickness on the optical properties of InAs quantum dots (QDs) by using transmission electron microscopy and photoluminescence (PL). The energy level shift of InAs QD samples is observed by introducing the thin AlAs layer without any significant loss of the QD qualities. The emission peak from InAs QDs directly grown on the 4 monolayer (ML) AlAs layer is blueshifted from that of reference sample by 219 meV with a little increase in FWHM from 42–47 meV for ground state. In contrast, InAs QDs grown under the 4 ML AlAs layer have PL peak a little redshifted to lower energy by 17 meV. This result is related to the interdiffusion of Al atom at the InAs QDs caused by the annealing effect during growing of InAs QDs on AlAs layer.  相似文献   

10.
We report the growth of well-ordered InAs QD chains by molecular beam epitaxy system. In order to analyze and extend the results of our experiment, a detailed kinetic Monte Carlo simulation is developed to investigate the effects of different growth conditions to the selective growth of InAs quantum dots (QDs). We find that growth temperature plays a more important role than growth rate in the spatial ordering of the QDs. We also investigate the effect of periodic stress on the shape of QDs in simulation. The simulation results are in good qualitative agreement with our experiment.  相似文献   

11.
Mn-including InAs quantum dots (QDs) were fabricated by Mn-ion implantation and subsequent annealing. The optical, compositional, and structural properties of the treated samples were analyzed by photoluminescence (PL) and microscopy. Energy dispersive X-ray (EDX) results indicate that Mn ions diffused from the bulk GaAs into the InAs QDs during annealing, and the diffusion appears to be driven by the strain in the InAs QDs. The temperature dependence of the PL of Mn-including InAs QD samples exhibits QDs PL characteristics. At the same time, the heavy Mn-including InAs QD samples have ferromagnetic properties and high Tc.  相似文献   

12.
We fabricate and characterize a novel vertical pillar structure including a self-assembled InAs quantum dot (QD) and an InGaAs quantum well (QW). The vertical current through both the InAs QD and an electrostatically defined QD made in the InGaAs QW can be measured by adjusting the position of the InGaAs QD in the QW plane relative to the InAs QD with two side-gate voltages applied independently. We study optical response of the current through the vertical double QD by irradiating light, which is assumed to be mainly absorbed in the InAs QDs. We successfully probe a time-dependent energy level shift due to the Coulomb interaction from holes trapped in the vicinity of the pillar.  相似文献   

13.
We present an atomic-scale analysis of the indium distribution of self-assembled (In,Ga)As quantum rings (QRs), which are formed from InAs quantum dots by capping with a thin layer of GaAs and subsequent annealing. We find that the size and shape of QRs as observed by cross-sectional scanning tunneling microscopy (X-STM) deviate substantially from the ring-shaped islands as observed by atomic force microscopy on the surface of uncapped QR structures. We show unambiguously that X-STM images the remaining quantum dot material whereas the AFM images the erupted quantum dot material. The remaining dot material shows an asymmetric indium-rich crater-like shape with a depression rather than an opening at the center and is responsible for the observed electronic properties of QR structures. These quantum craters have an indium concentration of about 55% and a diameter of about 20 nm, which is consistent with the observed electronic radius of QR structures. Based on the structural information from the X-STM measurements, we calculate the magnetization as a function of the applied magnetic field. We conclude that, although the real QR shape differs strongly from an idealized circular-symmetric open ring structure, Aharonov–Bohm-type oscillations in the magnetization can be expected.  相似文献   

14.
A pronounced modulation is observed in the photoluminescence (PL) spectrum of self-organized InAs/GaAs quantum dots (QDs), recorded at low excitation densities. The clearly distinguishable peaks are identified as a multimodal distribution of the ground state transition energy, originating from a discrete, stepwise variation of the structural properties of the QDs, which is associated with an increase of the QD height in monolayer (ML) steps. The observation of a ML splitting implies a flat QD shape with well-defined upper and lower interfaces as well as negligible indium segregation. The electronic properties of the InAs/GaAs QDs were investigated by PL and PL-excitation spectroscopy and are discussed based on realistic calculations for flat InAs/GaAs QDs with a truncated pyramidal shape based on an extended 8-band k·p model. The calculations predict a red shift of the ground state transition with each additional ML, which saturates for heights above 9 ML, is in good agreement with experiment.  相似文献   

15.
Quantum dots (QDs) have a potential for application in semiconductor optical amplifiers (SOAs), due to their high saturation power related to the low differential gain, fast gain recovery and wide gain spectrum compared to quantum wells. Besides all advantages, QDs realized by Stranski-Krastanov growth mode have a flat shape which leads to a gain anisotropy and a related transverse magnetic (TM) and -electric (TE) polarization dependence as compared to bulk material. This has so far prevented their applications in SOAs. It has been suggested that control of optical polarization anisotropy of the QD can be obtained through QD shape engineering, in closely stacked or columnar QDs (CQDs). To this aim, we have fabricated and tested SOA structures based on closely-stacked and columnar QDs. Closely-stacked InAs QDs with 4, 6 and 10 nm GaAs spacer showed a minor improvement in the ratio of TM and TE integrated electroluminescence (EL) over standard QDs along with a strong reduction in efficiency. In contrast, a large improvement was obtained in CQDs, depending on the number of stacked submonolayers which can be attributed to the more symmetric shape of columnar QDs. A relatively small spectral separation (ΔE ~ 21 meV) between TE- and TM-EL peaks has been observed showing that heavy- and light hole-like states, respectively are energetically close in these QDs. These results indicate that columnar QDs have a significant potential for polarization-independent QD SOA.  相似文献   

16.
We observe large spontaneous emission rate modification of individual InAs quantum dots (QDs) in a 2D photonic crystal with a modified, high-Q single-defect cavity. Compared to QDs in a bulk semiconductor, QDs that are resonant with the cavity show an emission rate increase of up to a factor of 8. In contrast, off-resonant QDs indicate up to fivefold rate quenching as the local density of optical states is diminished in the photonic crystal. In both cases, we demonstrate photon antibunching, showing that the structure represents an on-demand single photon source with a pulse duration from 210 ps to 8 ns. We explain the suppression of QD emission rate using finite difference time domain simulations and find good agreement with experiment.  相似文献   

17.
In the present work, we investigate the nonlinear optical properties emerged from excitonic features in an experimentally realized spherical parabolic semiconductor quantum dot (QD). The lowest exciton states together with relevant wave functions are calculated through the expansion method with direct matrix diagonalization method within the effective mass approximation. The effect of the size of QD and confinement potential in exciton state is studied in details. Results show that with increasing the size of the QD the energy of exciton decreases because of decreasing of the effect of coulomb potential. Using the compact density matrix formalism second order nonlinear optical rectification (χ(2)χ(2)) are obtained. By means of the applied electric and magnetic field we manipulate the exciton states and control the nonlinear optical response in a typical GaAs, InAs, CdSe QDs. Our model system presents a way to control the performance of excitonic optoelectronic devices based on semiconductor nanostructures.  相似文献   

18.
A strain-modified, single-band, constant-potential three-dimensional model was applied to study the dependence of electronic states of InAs/GaAs quantum dots (QDs) of different shapes and sizes. The energy trend was found to decrease monotonically with increasing QD size (i.e.E ~ size ?γ ) but exhibited minimum value at aspect ratio of approximately 0.5. The ground state energy for broad tip was found to be always lower than that of narrow tip. Thus, effort to alter the QD shape instead of the aspect ratio is proposed for longer wavelength emission with InAs/GaAs QDs. The energy dependency γ for volume was found to be approximately three times smaller than that for base length and height. A method was proposed to exploit this large difference for growth experimentalists to verify if the capped InAs QDs follow similar increase as the uncapped InAs QDs upon growth parameter variation.  相似文献   

19.
We present a method to control the nucleation sites of InAs self-assembled quantum dots (QDs). Tensile-strained material, such as GaAs used here, was grown on InP substrates before InAs deposition. This thin GaAs layer can provide a surface with grid-pattern trenches which have the same function as atomic-steps and are promising for the formation of QDs with controlled nucleation sites. Atom force microscopy (AFM) measurement was performed and the AFM images indicate that the InAs islands grown with our technique are grid-pattern aligned and have good homogeneity and low size fluctuation. In addition, another kind of three-dimensional structure with larger size would coexist with normal QDs if a 30nm thick GaAs layer was deposited. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
We report on studies of excitation transfer processes in vertically self-organized pairs of unequal-sized quantum dots (QDs), created in InAs/GaAs bilayers having differing InAs deposition amounts in the first (seed) and subsequent layer. The former and latter enable independent control, respectively, of the density and the size distribution of the second layer QDs. This approach allows us to enhance the average volume and improve the uniformity of InAs QDs, resulting in low-temperature photoluminescence at 1.028 eV with a linewidth of 25 meV for 1.74 ML (seed)/3.00 ML InAs stacking. The optical properties of the formed pairs of unequal-sized QDs with clearly discernible ground-state transition energy depend on the spacer thickness and composition. Photoluminescence results provide evidence for nonresonant energy transfer from the smaller QDs in the seed layer to the larger QDs in the second layer in such asymmetric QD pairs. Transfer times down to 20 ps (36 ML GaAs spacer) are estimated, depending exponentially on the GaAs spacer thickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号