首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural, elastic and electronic properties of NiTiSn and CoVSn half-Heusler compounds have been calculated using the full-potential linear muffin-tin orbital (FP-LMTO) method. The computed equilibrium lattice constants are in excellent agreement with the available experimental and theoretical data. The elastic constants Cij are calculated using the total energy variation with strain technique. The polycrystalline elastic moduli (namely: the shear modulus, Young's modulus, Poisson's ratio, Lamé's coefficients, sound velocities and the Debye temperature) were derived from the obtained single-crystal elastic constants. The ductility mechanism for the studied compounds is discussed via the elastic constants Cij and their related parameters. The electronic band structure calculations show that the conduction band minimum (CBM) is located at the X point for both compounds, whereas the valence band maximum (VBM) is located at the Г point for NiTiSn and at the L point for CoVSn, resulting in indirect energy band gaps of 0.46 and 0.75 eV for NiTiSn and CoVSn, respectively. The pressure and volume dependences of the energy band gaps have been calculated.  相似文献   

2.
The elastic, electronic and thermodynamic properties of fluoro-perovskite KZnF3 have been calculated using the full-potential linearized augmented plane wave (FP-LAPW) method. The exchange-correlation potential is treated with the generalized gradient approximation of Perdew-Burke-Ernzerhof (GGA-PBE). Also, we have used the Engel and Vosko GGA formalism (GGA-EV) to improve the electronic band structure calculations. The calculated structural properties are in good agreement with available experimental and theoretical data. The elastic constants C ij are calculated using the total energy variation with strain technique. The shear modulus, Young’s modulus, Poisson’s ratio and the Lamé coefficients for polycrystalline KZnF3 aggregates are estimated in the framework of the Voigt-Reuss-Hill approximations. The ductility behavior of this compound is interpreted via the calculated elastic constants C ij . Electronic and bonding properties are discussed from the calculations of band structure, density of states and electron charge density. The thermodynamic properties are predicted through the quasi-harmonic Debye model, in which the lattice vibrations are taken into account. The variation of bulk modulus, lattice constant, heat capacities and the Debye temperature with pressure and temperature are successfully obtained.  相似文献   

3.
The electronic, elastic constants and optical properties of rutile TiO2 have been investigated using first principle pseudopotential method within generalized gradient approximation (GGA) proposed by Perdew-Burke-Ernzerhof (PBE). The calculated volume, bulk modulus and pressure derivative of bulk modulus are in good agreement with previous experimental and computational results. An underestimated band gap (1.970 eV) along with the higher density of states and expanded energy bands around the fermi level is obtained. Calculated elastic constants satisfying the Born stability criteria suggest that rutile TiO2 is mechanically stable under higher hydrostatic pressure. The acoustic wave speeds in [1 0 0], [0 1 0], [0 0 1], [1 1 0] and [45° to [1 0 0] and [0 0 1]] directions are predicted using the investigated elastic constants. The dielectric constant is identified with respect to electronic band structure and is utilized to derive the other optical properties like refractive index, energy loss function, reflectivity and absorption. The effect of hydrostatic pressure (0-70 GPa) is described for listed properties. Our investigated results are in good accord with the existing theoretical and experimental results.  相似文献   

4.
The density functional theory (DFT) calculations of structural, elastic, electronic and optical properties of the cubic antiperovskite AsNMg3 has been reported using the pseudo-potential plane wave method (PP-PW) within the generalized gradient approximation (GGA). The equilibrium lattice, bulk modulus and its pressure derivative have been determined. The elastic constants and their pressure dependence are calculated using the static finite strain technique. We derived the bulk and shear moduli, Young's modulus and Poisson's ratio for ideal polycrystalline AsNMg3 aggregate. We estimated the Debye temperature of AsNMg3 from the average sound velocity. This is the first quantitative theoretical prediction of the elastic properties of AsNMg3 compound, and it still awaits experimental confirmation. Band structure, density of states and pressure coefficients of energy gaps are also given. The fundamental band gap (Γ-Γ) initially increases up to 4 GPa and then decreases as a function of pressure. Furthermore, the dielectric function, optical reflectivity, refractive index, extinction coefficient, and electron energy loss are calculated for radiation up to 30 eV. The all results are compared with the available theoretical and experimental data.  相似文献   

5.
Faruk Toksoy 《哲学杂志》2013,93(28):2469-2483
Abstract

By applying ab initio calculation within density functional theory (DFT), we study the structure parameters, electronic band structure, elastic coefficients, polycrystalline elastic properties, anisotropy factors and Debye temperature of ferroelectric and paraelectric phases of LiTaO3 within the generalised gradient approximation at ambient pressure. The atomic structure in both phases is fully relaxed and the lattice constant, angle and atomic positions are well consistent with experimental values. The computed single-crystal elastic coefficients indicate that mechanical stability of LiTaO3 in both phases is confirmed using the generalised Born criteria. The shear, bulk and Young’s modulus, Poisson’s ratio, and Vickers hardness were computed according to theoretical elastic constants by Voight–Reuss–Hill method. Several anisotropy factors and indexes are computed to illustrate mechanical anisotropy. Both phases are shown to be weakly anisotropic. The Debye temperature is estimated using the longitude and transverse elastic wave velocity of the ideal polycrystalline LiTaO3 aggregates. We have found that LiTaO3 in both phases has an indirect energy band gap. The differences in the electronic structure and density of states for both phases are quite small. Our results indicate that the mechanical and bonding properties of both phases are very similar. The obtained results were compared with the available experimental and theoretical values.  相似文献   

6.
The structural, electronic and optical properties of the binary silicon–germanium alloy have been investigated using the projector augmented-wave (PAW) calculations with a powerful VASP package (Vienna ab initio simulation package). The structural properties of Si0.5Ge0.5 alloy have been calculated using total energy calculations and compared with our empirical model of bulk modulus. The electronic band structure and density of state of Si0.5Ge0.5 alloy show that the conduction band minimum (CBM) is located at the X point and the valence band maximum (VBM) is located at the Г point, resulting in indirect (ГX) energy band gap of 0.48 eV. The results of the refractive index and optical dielectric constant of Si0.5Ge0.5 alloy are also obtained. The PAW's results are in good agreement with experimental, theoretical and our model results.  相似文献   

7.
We have conducted a first-principles study on the structural, electronic, optical and elastic properties of BeSiP2 and BeGeP2 chalcopyrite compounds. Using the density functional theory (DFT), implemented in both full potential linear muffin-tin orbital (FP-LMTO) and Vienna Ab initio simulation (VASP) packages. The FP-LMTO is used for the determination of the structural, electronic and optical properties, while the VASP is used to determine the elastic constants that give indications about the material stability. The obtained equilibrium structural parameters are in good agreement with available results. An investigation of the band gap indicates that our compounds possess a semiconductor behavior with direct band gap for BeSiP2 and with an indirect band gap for BeGeP2. The energy band gaps decreased by changing Be atoms from Si to Ge. We have calculated the dielectric function ε(ω). The obtained results show that these materials are promising semiconductors for photovoltaic applications. For the elastic properties, the single-crystal elastic constants Cij, shear anisotropic factors A, as well as polycrystalline bulk, shear and Young's modulus (B, G and E) and Poisson's ratio v have been predicted. The generalized elastic stability criteria for a tetragonal crystal are well satisfied, indicating that BeSiP2 and BeGeP2 are mechanically stable in the chalcopyrite structure.  相似文献   

8.
The electronic band structure and elastic constants of SnS2 and SnSe2 have been calculated by using density-functional theory (DFT). The calculated band structures show that SnS2 and SnSe2 are both indirect band gap semiconductors. The upper valence bands originate mainly from Sp and Snd electrons, while the lowest conduction bands are mainly from (S, Se) p and Sns states. The calculated elastic constants indicate that the bonding strength along the [100] and [010] direction is stronger than that along the [001] direction and the shear elastic properties of the (010) plane are anisotropic for SnS2 and SnSe2. Both compounds exhibit brittle behavior due to their low B/G ratio. Relationships among volumes, the heat capacity, thermal expansion coefficients, entropy, vibrational energy, internal energy, Gibbs energy and temperature at various pressures are also calculated by using the Debye mode in this work.  相似文献   

9.
ABSTRACT

Titanium nitride halides, TiNX (X = F, Cl, Br, I) in the α-phase (orthorhombic) are exciting quasi two-dimensional (2D) electronic systems exhibiting a fascinating series of electronic ground states. Pristine TiNX are semiconductors with varying energy gaps and possess attractive properties for potential applications in optoelectronics, photovoltaics, and thermoelectrics. Alkali metal intercalated TiNCl becomes superconducting at reasonably high temperature. We have revisited the electronic band structure of TiNX using density functional theory (DFT) based calculations. The atomic orbital resolved partial electronic energy densities of states are calculated together with the total density of states (TDOS). The structural and elastic properties have been investigated in details for the first time. The elastic anisotropy has been explored. The optical properties of TiNX are studied for the first time. The Debye temperatures have been calculated and the related thermal and phonon parameters are discussed. The calculated physical parameters are compared with existing theoretical and experimental results and showed fair agreement. TiNX are found to reflect electromagnetic radiation strongly in the mid ultraviolet region. The elastic properties show high degree of anisotropy. The effect of halogen atoms on various structural, elastic, electronic, and thermal properties in TiNX are also discussed in detail.  相似文献   

10.
First principles study of structural, elastic, electronic and optical properties of the cubic perovskite-type BaHfO3 has been reported using the pseudo-potential plane wave method within the local density approximation. The calculated equilibrium lattice is in a reasonable agreement with the available experimental data. The elastic constants and their pressure dependence are calculated using the static finite strain technique. A linear pressure dependence of the elastic stiffnesses is found. Band structures show that BaHfO3 is a direct band gap between the occupied O 2p and unoccupied Hf d states. The variation of the gap versus pressure is well fitted to a quadratic function. Furthermore, in order to understand the optical properties of BaHfO3, the dielectric function, absorption coefficient, optical reflectivity, refractive index, extinction coefficient, and electron energy loss are calculated for radiation up to 30 eV. We have found that O 2p states and Hf 5d states play a major role in the optical transitions as initial and final states, respectively. This is the first quantitative theoretical prediction of the elastic, electronic and optical properties of BaHfO3 compound, and it still awaits experimental confirmation.  相似文献   

11.
Suleyman Cabuk 《哲学杂志》2020,100(5):601-618
ABSTRACT

Based on first principles computations, the structural, mechanical, electronic band structure, and optical properties of SeZnO3 compound have been predicted. The dependence of selected observables of SeZnO3 compound on the effective U (the Hubbard on-site Coulomb repulsion) parameter has been investigated in detail. The elastic constant, Young’s modulus, bulk modulus, shear modulus, Poisson ratio, anisotropic factor, acoustic velocity, and Debye temperature have been computed. The calculated electronic band structure and density of states indicate that SeZnO3 is a semiconductor material and has indirect band gap. The computations of the optical spectra, as a function of the incident photon radiation in 0–35?eV energy range has also been performed and the interband transitions are examined. The results indicate that Hubbard parameter plays a crucial role in explaining mechanical, electronic, and optical properties of SeZnO3.  相似文献   

12.
Structural, phonon, optical, elastic and electronic properties of Y3Al5O12 have been investigated by means of the first principles method with the Cambridge Serial Total Energy Package (CASTEP) code based on the density functional theory. The calculated lattice parameters, valence charge density, bond length and single crystal elastic properties at zero pressure are in good agreement with the available experimental data. The close agreement with the experimental values provides a good confirmation of the reliability of the calculations. Optical, elastic and phonon properties of Y3Al5O12 under pressures are performed. The results that are obtained show the changes of optical and elastic properties under the influence of applied pressure, and proving the dynamical stability of YAG are destructed when applied pressure up to 7 GPa. Moreover, polycrystalline elastic moduli are deduced according to the Reuss assumption. Those elastic constants provide important parameters that describe reliability of both physical model and engineering application at the atomistic level. The result of the density of states explains the nature of the electronic band structure.  相似文献   

13.
The structural parameters, elastic, electronic, and optical properties of hexagonal BiAlO3 were investigated by the density functional theory. The calculated structural parameters are in good agreement with previous calculation and experimental data. The structural stability of BiAlO3 has been confirmed by calculation of the elastic constants. The energy band structure, density of states, and Mulliken charge populations were obtained. BiAlO3 presents an indirect band gap of 3.28 eV. Furthermore, the optical properties were calculated and analyzed. It is shown that BiAlO3 is a promising dielectric material.  相似文献   

14.
The elastic, electronic, and optical properties of MNNi3 (M=Zn, Sn, and Cu) have been calculated using the plane-wave ultrasoft pseudopotential technique, which is based on the first-principle density functional theory (DFT) with generalized gradient approximation (GGA). The optimized lattice parameters, independent elastic constants (C11, C12, and C44), bulk modulus B, compressibility K, shear modulus G, and Poisson's ratio υ, as well as the band structures, total and atom projected densities of states and finally the optical properties of MNNi3 have been evaluated and discussed. The electronic band structures of the two hypothetical compounds show metallic behavior just like the superconducting ZnNNi3. Using band structures, the origin of features that appear in different optical properties of all the three compounds has been discussed. The large reflectivity of the predicted compounds in the low energy region might be useful in good candidate materials for coating to avoid solar heating.  相似文献   

15.
The electronic structure and elastic properties of the newly discovered ternary layered carbide Ti4GaC3 were investigated by means of the first-principle plane-wave pseudopotential total energy calculation method based on density functional theory. The computed results, including lattice constants and internal coordinates, are in good agreement with experimental values. The elastic moduli of ideal polycrystalline Ti4GaC3 were predicted from the individual elastic constants by Voigt approximation. The band structure shows that the electrical conductivity is metallic and anisotropic, with a high density of states at the Fermi energy. The elastic properties are anisotropic, related to the Ti–Ga bonds being relatively weaker than the Ti–C bonds.  相似文献   

16.
The structural parameters, elastic constants, electronic structure and optical properties of the recently reported monoclinic quaternary nitridoaluminate LiCaAlN2 are investigated in detail using the ab initio plane-wave pseudopotential method within the generalized gradient approximation. The calculated equilibrium structural parameters are in excellent agreement with the experimental data, which validate the reliability of the applied theoretical method. The chemical and structural stabilities of LiCaAlN2 are confirmed by calculating the cohesion energy and enthalpy of formation. Chemical band stiffness is calculated to explain the pressure dependence of the lattice parameters. Through the band structure calculation, LiCaAlN2 is predicted to be an indirect band gap of 2.725 eV. The charge-carrier effective masses are estimated from the band structure dispersions. The frequency-dependent dielectric function, absorption coefficient, refractive index, extinction coefficient, reflectivity coefficient and electron energy loss function spectra are calculated for polarized incident light in a wide energy range. Optical spectra exhibit a noticeable anisotropy. Single-crystal and polycrystalline elastic constants and related properties, including isotropic sound velocities and Debye temperatures, are numerically estimated. The calculated elastic constants and elastic compliances are used to analyse and visualize the elastic anisotropy of LiCaAlN2. The calculated elastic constants demonstrate the mechanical stability and brittle behaviour of the considered material.  相似文献   

17.
We have investigated the structural, elastic and electronic properties of the anti-perovskite TlNCa3 using ab initio calculations within the generalized gradient approximation and the local density approximation for the exchange–correlation potential. The lattice constant, bulk modulus, elastic constants and their pressure dependence, energy band structures, density of states and charge density distribution are calculated and analyzed in comparison with the available experimental and theoretical data. The bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, Lamé’s coefficients, average sound velocity and Debye temperature are numerically estimated for ideal polycrystalline TlNCa3 aggregates in the framework of the Voigt–Reuss–Hill approximation. This is the first theoretical prediction of the elastic constants and their related properties for TlNCa3 that requires experimental confirmation.  相似文献   

18.
First-principles calculations were performed to investigate the structural, elastic, electronic, optical and thermoelectric properties of the Zintl-phase Ae3AlAs3 (Ae = Sr, Ba) using two complementary approaches based on density functional theory. The pseudopotential plane-wave method was used to explore the structural and elastic properties whereas the full-potential linearised augmented plane wave approach was used to study the structural, electronic, optical and thermoelectric properties. The calculated structural parameters are in good consistency with the corresponding measured ones. The single-crystal and polycrystalline elastic constants and related properties were examined in details. The electronic properties, including energy band dispersions, density of states and charge-carrier effective masses, were computed using Tran-Blaha modified Becke-Johnson functional for the exchange-correlation potential. It is found that both studied compounds are direct band gap semiconductors. Frequency-dependence of the linear optical functions were predicted for a wide photon energy range up to 15 eV. Charge carrier concentration and temperature dependences of the basic parameters of the thermoelectric properties were explored using the semi-classical Boltzmann transport model. Our calculations unveil that the studied compounds are characterised by a high thermopower for both carriers, especially the p-type conduction is more favourable.  相似文献   

19.
Using the first-principles full-potential linear muffin-tin orbital method within the local density approximation, we have studied the structural, elastic, thermodynamic, and electronic properties of the ideal-cubic perovskite BiGaO3. It is found that this compound has an indirect band gap. The valence band maximum (VBM) is located at Γ-point, whereas the conduction band minimum (CBM) is located at X-point. The pressure and volume dependences of the energy band gaps have been calculated. The elastic constants at equilibrium are also determined. We derived the bulk and shear moduli, Young’s modulus, and Poisson’s ratio. The thermodynamic properties are predicted through the quasi-harmonic Debye model, in which the lattice vibrations are taken into account. The variation of the bulk modulus, heat capacities, and Debye temperature with pressure and temperature are successfully obtained.  相似文献   

20.
A detailed theoretical study of structural, electronic, and elastic properties of cubic UAlx (x=1,2,3) is presented employing the pseudopotential plane-wave method based on density-functional theory. The structure parameters of these three compounds have been calculated within generalized gradient approximation (GGA) and local density approximation (LDA). The calculated results were compared with the experimental data and previous research. With the GGA approximation, the elastic constants, shear modulus, Young's modulus, and Poisson's ratio of UAlx (x=1,2,3) are derived. According to the generalized mechanical stability criteria for cubic crystals, our calculation suggested that C15 UAl2 and L12 UAl3 are stable substance under hydrostatic pressures, but B2 UAl might be expected as a metastable compound, which is not reported in previous literature, and future experimental confirmation is needed. Furthermore, the calculated energy band structure and density of state (DOS) are found to be in good agreement with the theoretical values. Additionally, the charge density of these compounds have also been worked out and analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号