首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
New classes of fluorinated sulfonate surfactants were synthesized in which a perfluoroalkyl chain is interrupted either by an ether oxygen (–O–), or by methylene (–CH2–) units. Both classes of molecules involve multi-step syntheses. The fluoroether sulfonates (RfOCF2CF2CH2CH2SO3H, Rf = C2F5, C3F7) were achieved in four steps including fluoroiodonation of perfluorovinyl ethers (RfCF = CF2), ethylation, chlorination and hydrolysis. The methylene interrupted fluorosulfonates (RfCH2CF2CH2CH2SO3H, Rf = C4F9, C6F13) were also prepared in four steps involving vinylidene fluoride insertion of fluoroalkyl iodides, ethylene insertion, chlorination and hydrolysis. All intermediates and final products were well characterized by 1H and 19F NMR. These new fluorinated surfactants were compared to a commercially available fluorosulfonate (C6F13CH2CH2SO3H) for surface activity. These materials match the surface tensions of commercial fluorosurfactant yet are more efficient because they have lower fluorine content.  相似文献   

2.
Thermal electron attachment rate constants for CF3CHClCH3, CF2ClCFClCF3 and CBrF2CH2CH2Br have been measured with electron swarm method. Corresponding rate constants are equal to 7.6×10−11, 5.5×10−9 and 1.5×10−8 cm3 molecule−1 s−1, respectively. The dissociative electron attachment (DEA) spectra for nine haloalkanes have been determined using negative ion mass spectrometry. The correlation between rate constants, position of the DEA peaks and vertical attachment energy (VAE) available in literature has been demonstrated.  相似文献   

3.
The bonding of adducts between electron donors (D), such as NH3 and PH3, with phosphinidenes RP: (R = H, CH3, NH2, PH2, PF2) was examined using density functional theory calculations. The structures were optimized at the B3LYP/6-311++G7 level of theory. The main interest of this work is to find the appropriate donor that can stabilize the phosphinidene. Accordingly, the magnitude of bond strength correlates well with the difference in ionization potential (ΔIP) of the orbitals involved in the D?P interaction.  相似文献   

4.
Fluorinated surfactants are exceptional compounds that have found many applications in everyday life. This review focuses on severe issues on the toxicity, persistency and bioaccumulation of these halogenated products, especially perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), the half-lives of which are several years in human serum. After an introduction on their productions, uses and hazards, this minireview updates non-exhaustive recent strategies of synthesis of original fluorosurfactants that may be potentially non-bioaccumulable. These routes have been devoted on: (i) the preparation of CF3-X-(CH2)n-SO3Na (with X = O, C6H4O or N(CF3) and n = 8–12), (ii) the use of fluorinated polyethers (achieved either by oligomerization of hexafluoropropylene oxide (HFPO) or by ring opening cationic oligomerization of fluorinated oxetanes; (iii) the telomerization of vinylidene fluoride (VDF) with 1-iodoperfluoralkanes to produce CnF2n + 1-(VDF)2-CH2CO2R (n = 2 or 4, R = H or NH4), (iv) the radical telomerization of 3,3,3-trifluoropropene (TFP) with isoperfluoropropyliodide to prepare (CF3)2CF(TFP)x-RH, and (v) the radical cotelomerization of VDF and TFP, or their controlled radical copolymerization in the presence of either (CF3)2CFI or a fluorinated xanthate. In most cases, the surface tensions versus the surfactant concentrations have been assessed. These above pathways led to various highly fluorinated (but yet not perfluorinated) telomers or cooligomers, the chemical changes of which enabled to obtain original surfactants as novel alternatives to PFOA, ammonium perfluorooctanoate (APFO), or PFOS regarded as the PCBs of the XXIst century.  相似文献   

5.
Taking into account the changes of the geometric shielding effect in a molecule as the incident electron energy varies, an empirical fraction, which depends on the energy of the incident electrons, the target's molecular dimension and the atomic and electronic numbers in the molecule, is presented. Using this empirical fraction, a new formulation of the additivity rule is proposed. Using the new additivity rule, the total cross sections of electron scattering by CO2, C2H2, CHCl3, CH2Cl2, CH3Cl, CHF3, CH2F2 and CH3F are calculated at the Hartree–Fork level at 30–5000 eV. The quantitative total cross sections are compared with those obtained by experiments and other theories, and good agreement is obtained over a wide energy range, especially above 100 eV.  相似文献   

6.
Heat capacity for 1-butyl-3-methylimidazolium trifluoroacetate [bmim][CF3COO] and acetate [bmim][CH3COO] in the temperature range of (5 to 370) K has been measured by adiabatic calorimetry. Temperatures and enthalpies of phase transitions in [bmim][CF3COO] have been determined. Thermodynamic functions for the compounds in the condensed state have been calculated. Physicochemical properties for the studied ionic liquids and alkali acetate salts have been compared. The correlation scheme for estimation of Cp of ionic liquids in a range of (190 to 370) K has been developed.  相似文献   

7.
The effects on the geometry structure, atomic charges and vibrational wavenumbers of the main different substituents in the 5th position of the uracil ring were analysed, and relationships were established. The 5-monosubstituted derivatives studied were 5-XU (X = F, Cl, Br, I, CH3, NH2, NO2). The geometry and vibrational wavenumbers were determined in these molecules. The FT-IR and Raman spectra were studied with the support of B3LYP calculations using several basis sets. Several general conclusions were underlined.  相似文献   

8.
The available hydroxyl groups inside the lamellar cavity of barium phosphate (BaP) reacted with the silylating agents (RO)3Si(CH2)3Lx (L1 = NH2, L2 = NH(CH2)2NH2, and L3 = NH(CH2)2 NH(CH2)2NH2), to yield organofunctionalized BaPSiL1, BaPSiL2 and BaPSiL3 nanomaterials. The amounts of organofunctional groups covalently attached to the inorganic layer were (1.24, 1.46, and 1.23) mmol · g?1, respectively. The basic nitrogen atoms attached to the distinct pendant organic chains adsorb divalent nickel and cobalt from aqueous solutions, as represented by well-established isotherms. The energetic effects caused by metallic cation interactions were determined through calorimetric titration at the solid/liquid interface and gave a net thermal effect that enabled enthalpy and equilibrium constant calculations. Complete thermodynamic results composed of exothermic enthalpy, negative free Gibbs energy and positive entropy result in a set of favourable cation/basic centre interactions, to indicate that these nanomaterials could be useful tools to eliminate undesirable cations from aqueous systems.  相似文献   

9.
The one-pot, regioselective synthesis of branched diacid derivatives – diesters, dithioesters, diamides [YC(O)O(CH2)mC(Me)2OC(O)Y] and diketones of aromatic and heteroaromatic series, [ArCO(CH2)mC(Me)2C(O)Ar,) from available linear acyl halides, CnH2 n+1COCl (n = 7–9), CO (1 at) and various nucleophiles (YH = EtOH, CF3CH2OH, H(CF2)2CH2OH, thiophene, anisole, Et2NH, aniline, and morpholine) in the presence of the superelectrophilic complex, CBr4·2AlBr3 has been performed for the first time. This method provides access to new and promising groups of dicarboxylic acid derivatives and diketones containing quaternary carbon atom and remote functional groups.  相似文献   

10.
Substitution of the peripheral H atoms in the corannulene molecule as a carbon nanostructure by OH, CH3, NH2 and NO2 groups on the molecular hydrogen physisorption was evaluated at MP2/6-31G(d) level of theory. Two orientations of hydrogen were used on the concave and convex sides of corannulene. It was seen that binding to the concave face is favored relative to the convex face. The average binding energy was calculated and corrected for the basis set superposition error (BSSE) using the counterpoise method. Results showed that binding energy varies depending upon the site and side of absorption. The electronic density, charge transfer and spatial prohibition of the substituted groups affects the binding energy. The increment of the electronic density because of the substitution of electron donor groups facilitates hydrogen adsorption and leads to larger binding energies than when H atoms are substituted by electron acceptor groups. Substitution of H atoms with each of the considered groups leads to decreasing of the HOMO–LUMO energy gap and so decreasing of the kinetic stability and increasing of the reactivity. The energy gap and binding energy for corannulene derivatives decreases in the order of: CH3 > OH > NH2 > NO2.  相似文献   

11.
In the present work, we have synthesized praseodymium(III) chloride, PrCl3, from the praseodymium oxide, Pr6O11, by dry method in the presence of ammonium chloride, NH4Cl. This study includes the establishment of an assembly synthesis under inert gas. The thermal decomposing process of pure NH4Cl was investigated by TG–DTG. The results showed that NH4Cl begins to lose weight at 188 °C, large loss of weight ending at 302 °C when NH4Cl is heated at the rate of 10 °C/min under N2 atmosphere. For chlorination, NH4Cl participates directly in the reaction, and HCl decomposed from NH4Cl also contributes to the chlorination reaction. The influence of various synthesis parameters (temperature, contact time and chemical composition) on the reaction yield was studied, and the optimum conditions for synthesis were, thus, determined and discussed.  相似文献   

12.
《Vibrational Spectroscopy》2007,43(1):177-183
The isotropic part of the Raman bands corresponding to NH2 bending and ν(CO) stretching modes of formamide (HCONH2) at ∼1593 and 1668 cm−1, respectively, in neat HCONH2 as well as in binary mixtures with methanol (CH3OH) were reinvestigated. Variations of their linewidths exclusively with mole fractions of HCONH2, in the range C = 0.1–0.9 were studied. The linewidth variation of the NH2 bending mode shows a departure from the trend expected on the basis of concentration fluctuation model and this has been explained using a recently suggested empirical model by invoking the concept of microviscosities of the solute, HCONH2 and the solvent, CH3OH. The other peak at ∼1668 cm−1 shows a peculiar variation of the linewidth with concentration having two minima at C = 0.8 and 0.4, which have been explained in terms of formation of hydrogen bonded complexes, NH2HCO⋯HOCH3, and NH2HCO⋯(HOCH3)2 and the two phenomena, namely motional narrowing and diffusion dynamics being simultaneously operative. The equilibrium constants have been evaluated from the spectral data and their variation with total molar concentration has been presented.  相似文献   

13.
《Solid State Sciences》2007,9(2):149-154
The mild-condition syntheses, single-crystal structures and properties of H3N(CH2)5NH3·Zn3(HPO3)4 and β-H3N(CH2)6NH3·Zn3(HPO3)4 are reported. Both are constructed from (3,4)-nets of ZnO4 tetrahedra and HPO3 pyramids, sharing vertices to result in three-dimensional anionic open-frameworks. In both materials, the organic species interacts with the framework by way of N–H⋯O bonds. Crystal data: H3N(CH2)5NH3·Zn3(HPO3)4, Mr = 620.22, orthorhombic, Pccn (No. 56), a = 9.5364 (9) Å, b = 21.8015 (19) Å, c = 9.1118 (7) Å, V = 1894.4 (3) Å3, Z = 4, R(F) = 0.044, wR(F2) = 0.111. β-H3N(CH2)6NH3·Zn3(HPO3)4, Mr = 634.25, monoclinic, P21/n (No. 14), a = 8.7627 (1) Å, b = 13.8117 (2) Å, c = 16.6187 (3) Å, β = 92.680 (1)°, V = 2009.12 (5) Å3, Z = 4, R(F) = 0.072, wR(F2) = 0.187.  相似文献   

14.
Al-kanemite was synthesized by using inorganic salts as a source for silicon and aluminum in the hydrothermal synthesis of the material. The resulting solid was used as hosts for functionalization of polar n-alkylamine molecules of the general formula H3C(CH2)n?NH2 (n = 1 to 5) in aqueous solution. The compound was calorimetrically titrated with amine in 1,2-dichloroethane, requiring three independent operations: (i) titration of matrix with amine, (ii) matrix salvation, and (iii) dilution of the amine solution. From those thermal effects the variation in enthalpy was calculated as: (?6.81, ?7.76, ?8.97, ?9.94, and ?11.83) kJ · mol?1, for n = 1 to 5, respectively. The exothermic enthalpy values reflected a favorable energetic process of amine-host functionalization in 1,2-dichloroethane. The original and modified Al-kanemite samples were characterized by elemental analysis, scanning electron microscopic (SEM), and nuclear magnetic nuclei of silicon-29 and carbon-13. The negative Gibbs free energy results supported the spontaneity of all these functionalization reactions. The positive favorable entropic values, as carbon chain size increased, are in agreement with the free solvent molecules in the solution, as the amines are progressively bonded to the crystalline inorganic matrix at the solid/liquid interface.  相似文献   

15.
FTIR spectroscopy and quantum chemical calculations at the RTF + MP2/6-311G** level of theory with solvation model density (SMD) corrections were used to study ion solvation and association in LiBr/acetonitrile solutions. The aim of this study was to establish the composition and geometry of the predominant ionic species solvated by acetonitrile molecules and to analyse their spectroscopic signatures. The results obtained make it possible to propose an equilibrium between Li+Br(CH3CN)3, Li+(CH3CN)4, and anionic Br(CH3CN)n complexes with an undetermined n value and bent coordination of the solvent molecules. The calculated wavenumbers and the geometric parameters of the solvated ionic species were found to be in excellent agreement with the experimental data.  相似文献   

16.
《Chemical physics》2005,317(1):35-42
The quantum theory of atoms in molecules (AIM) has been used to decompose dipole moment derivatives and fundamental infrared intensities of the AB3 (A = N,P; B = H,F) molecules into charge–charge flux–dipole flux (CCFDF) contributions. Calculations were carried out at the MP2(FC)/6-311++G(3d,3p) level. Infrared intensities calculated from the AIM atomic charges and atomic dipoles are within 13.8 km mol−1 of the experimental values not considering the NH3 and PH3 stretching vibrations for which the experimental bands are severely overlapped. Group V atomic dipoles are very important in determining the molecular dipole moments of NF3, PH3 and PF3 although the atomic charges account for almost all of the NH3 molecular moment. Dipole fluxes on the Group V atom are important in determining the stretching band intensities of all molecules whereas they make small contributions to the bending mode intensities. Consideration of dipole flux contributions from the terminal atoms must also be made for accurately describing the intensities of all these molecules. As expected from a simple bond moment model, charge contributions dominate for most of the NH3, NF3, and PF3 dipole moment derivatives and intensities. Charge flux and dipole flux contributions are very substantial for all the PH3 vibrations, cancelling each other for the stretching modes and reinforcing one another for the bending modes.  相似文献   

17.
A feasible approach to 2-azaspirocyclic cyclohexadienones via visible-light-induced perfluoroalkylation cyclization of N-benzylacrylamides was reported. Using Rf-X (X = I or Br) as the Rf radical source, the reaction underwent a cascade radical addition/dearomative cyclization process by Ir photocatalyst, leading to various 2-azaspiro[4.5]deca-6,9-diene-3,8-diones bearing perfluorinated groups including CF3, n-C3F7, n-C4F9, n-C6F13, n-C8F17, n-C10F21, CH2CF2 and CF2CO2Et.  相似文献   

18.
The title compound MIL-131 (MIL stands for Material from Institut Lavoisier) was prepared hydrothermally (4 days, 473 K, autogenous pressure) in the presence of an organic base (N((CH2)2NH2)3). The structure of MIL-131 or TiIIITiIV(OH)F4(HPO4)·(PO4)·(N((CH2)2NH3)3) has been determined ab initio from X-Ray synchrotron powder diffraction data using simulated annealing methods and was refined in the triclinic space group P-1 (no. 2). MIL-131 exhibits a one-dimensional structure built up from inorganic chains of corner sharing TiO5(OH) titanium(III) octahedra and PO4 and HPO4 phosphate tetrahedra, related to TiO2F4 titanium octahedra. Protonated triamine cations are located between the inorganic motifs, and interact strongly with the mineral network through hydrogen bondings both with terminal fluorine atoms and hydroxo or oxo groups. Multinuclear solid state NMR has allowed a clear attribution of the protons, fluoride, and phosphate groups environment within the framework of MIL-131. The large values of chemical shift anisotropy together with the absence of any 13C NMR response confirmed the presence of paramagnetic titanium(III) species deduced from the crystal structure. Finally, 2D MAS 1H-31P CP-HETCOR NMR correlation experiment gives some insight on the nature of the intra-framework hydrogen bonding.Crystal data for MIL-131: a = 14.109(1) Å, b = 8.462(3) Å, c = 7.179(1) Å, α = 93.772(1)°, β = 96.566(2)°, γ = 98.004(1)°, V = 840.36(2) Å3, z = 2.  相似文献   

19.
The chemical composition and components of a polytetrafluoroethylene (PTFE) surface was investigated as a function of the temperature under the irradiation of synchrotron radiation (SR) by the X-ray photoelectron spectroscopy (XPS). When the temperature of PTFE under the SR irradiation was less than 100 °C, the C-rich surface appeared. With increasing the temperature more than 150 °C, the relative intensity of the F 1s peak to the C 1s peak increased markedly. At the temperatures of 150–180 °C, the C–C component became small and the CF2 component was dominant. With further increasing the temperature more than 200 °C, CF3, CF and C–CF components grew in addition to CF2 component. Based on these XPS results, the temperature effect on the chemical composition and components is discussed.  相似文献   

20.
Fluorescence properties of five 4-acyl pyrazolone based hydrazides (H2SBn) and their Fe (III) heterochelates of the type [Fe(SBn)(L)(H2O)]·mH2O [H2SBn = nicotinic acid [1-(3-methyl-5-oxo-1-phenyl-4,5-di hydro-1H-pyrazol-4yl)-acylidene]-hydrazide; where acyl = –CH3, m = 4 (H2SB1); –C6H5, m = 2 (H2SB2); –CH2–CH3, m = 3 (H2SB3); –CH2–CH2–CH3, m = 1.5 (H2SB4); –CH2–C6H5, m = 1.5 (H2SB5) and HL = 1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid] were studied at room temperature. The fluorescence spectra of heterochelates show red shift, which may be due to the chelation by the ligands to the metal ion. It enhances ligand ability to accept electrons and decreases the electron transition energy. The kinetic parameters such as order of reaction (n), energy of activation (Ea), entropy (S*), pre-exponential factor (A), enthalpy (H*) and Gibbs free energy (G*) have been reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号