首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon cycle science by Fourier transform spectroscopy (CC-FTS) is an advanced study for a future satellite mission. The goal of the mission is to obtain a better understanding of the carbon cycle in the Earth's atmosphere by monitoring total and partial columns of CO2, CH4, N2O, and CO in the near infrared. CO2, CH4, and N2O are important greenhouse gases, and CO is produced by incomplete combustion. The molecular O2 column is also needed to obtain the effective optical path of the reflected sunlight and is used to normalize the column densities of the other gases. As part of this advanced study, ground-based Fourier transform spectra are used to evaluate the spectral region and resolution needed. Spectra in the 3950–7140 cm?1 region with a spectral resolution of 0.0042 cm?1 recorded at Kiruna (67.84°N, 20.41°E, and 419 m above sea level), Sweden, on 1 April 1998, were degraded to the resolutions of 0.01, 0.1, and 0.3 cm?1. The effect of spectral resolution on the retrievals has been investigated with these four Kiruna spectra. To obtain further information on the spectral resolution, optical components and spectroscopic parameters required by the future mission, high-resolution solar absorption spectra between 2000 and 15000 cm?1 were recorded using Fourier transform spectrometers at Kitt Peak (31.9°N, 111.6°W, and 2.1 km above sea level), Arizona, on 25 July 2005 and Waterloo (43.5°N, 80.6°W, and 0.3 km above sea level), Ontario, on 22 November 2006 with spectral resolutions of 0.01 and 0.1 cm?1, respectively. Dry air volume mixing ratios (VMRs) of CO2 and CH4 were retrieved from these ground-based observations. The HITRAN 2004 spectroscopic parameters are used with the SFIT2 package for the spectral analysis. The measurement precisions for CO2 and CH4 total columns are better than 1.07% and 1.13%, respectively, for our observations. Based on these results, a Fourier transform spectrometer (maximum spectral resolution of 0.1 cm?1 or 5 cm maximum optical path difference (MOPD)) operating between 2000 and 15000 cm?1 is suggested as the primary instrument for the mission. Further progress in improving the atmospheric retrievals for CO2, CH4, and O2 requires new laboratory measurements of the spectroscopic line parameters.  相似文献   

2.
Infrared absorption cross sections for methanol, CH3OH, have been determined near 3.4 and 10 μm from spectra recorded using a high-resolution FTIR spectrometer (Bruker IFS 125HR) and a multipass cell with a maximum optical path length of 19.3 m. Methanol/dry synthetic air mixtures were prepared and spectra were recorded at 0.015 cm?1 resolution (calculated as 0.9/MOPD) at a number of temperatures and pressures (50–760 Torr and 204–296 K) appropriate for atmospheric conditions. Intensities were calibrated using composite methanol spectra taken from the Pacific Northwest National Laboratory (PNNL) IR database. The new measurements in the 10 μm region indicate problems with the existing methanol spectroscopic line parameters in the HITRAN database, which will impact the accuracy of satellite retrievals.  相似文献   

3.
The goal of this study is to achieve absolute line intensities for the strong 5.7 and 3.6 μm bands of formaldehyde and to generate, for both spectral regions, an accurate list of line positions and intensities. Both bands are now used for the infrared measurements of this molecule in the atmosphere. However, in the common access spectroscopic databases there exists, up to now, no line parameters for the 5.7 μm region, while, at 3.6 μm, the quality of the line parameters is quite unsatisfactory. High-resolution Fourier transform spectra were recorded for the whole 1600–3200 cm?1 spectral range and for different path-length-pressure products conditions. Using these spectra, a large set of H2CO individual line intensities was measured simultaneously in both the 5.7 and 3.6 μm spectral regions. From this set of experimental line strength which involve, at 5.7 μm the ν2 band and, at 3.6 μm, the ν1 and ν5 bands together with nine dark bands, it has been possible to derive a consistent set of line intensity parameters for both the 5.7 and 3.6 μm spectral regions. These parameters were used to generate a line list in both regions. For this task, we used the line positions generated in [Margulés L, Perrin A, Janeckovà R, Bailleux S, Endres CP, Giesen TF, et al. Can J Phys, accepted] and [Perrin A, Valentin A, Daumont L, J Mol Struct 2006;780–782:28–42] for the 5.7 and 3.6 μm, respectively. The calculated band intensities derived for the 5.7 and 3.6 μm bands are in excellent agreement with the values achieved recently by medium resolution band intensity measurements. It has to be mentioned that intensities in the 3.6 μm achieved in this work are on the average about 28% stronger than those quoted in the HITRAN or GEISA databases. Finally, at 3.6 μm the quality of the intensities was significantly improved even on the relative scale, as compared to our previous study performed in 2006.  相似文献   

4.
The improved database of HNO3 spectroscopic parameters in the 600–950 cm?1 spectral region presented in [Gomez L, Tran H, Perrin A, Gamache RR, Laraia A, Orphal J, et al. Some improvements of the HNO3 spectroscopic parameters in the spectral region from 600 to 950 cm?1. JQSRT 2008, in press] is tested by comparisons between calculations and atmospheric remotely sensed absorption and emission spectra. The line parameters in the 11.3 μm region are validated using ground-based Fourier transform solar absorption measurements, whereas those in the 13.1 μm region are successfully tested using balloon-borne atmospheric emission spectra. In both regions, the quality of the line parameters and the consistency between band intensities is confirmed through comparisons with emission spectra collected by the satellite-borne MIPAS instrument.  相似文献   

5.
Using a cryogenic cell and a series of Distributed Feed Back (DFB) diode lasers, new high resolution spectra of methane have been recorded at 80 K and room temperature by differential absorption spectroscopy (DAS) between 6717 and 7589 cm?1 (1.49–1.32 μm). The investigated spectral region corresponds to the very congested icosad, which is not tractable by theory. Empirical lists of 19,940 and 24,001 lines were constructed from the 80 K and room temperature spectrum, respectively. The room temperature list adds about 8500 features to the empirical list of 15,375 lines at 296 K adopted in the HITRAN database from the original work of L. Brown (Brown, L. Empirical line parameters of methane from 1.1 to 2.1 μm. JQSRT 2005;96:251–70). A number of relatively strong CH4 lines located near strong water lines were found missing in the HITRAN line list. The improved sensitivity allowed adding more than 7000 lines to our previous list of about 12,000 transitions at 80 K (Campargue A, Wang L, Kassi S, Ma?át M, Votava O. Temperature dependence of the absorption spectrum of CH4 by high resolution spectroscopy at 81 K: (II) The Icosad region (1.49–1.30 μm). JQSRT 2010;111:1141–51). In order to facilitate identification of the transitions of the different methane isotopologues present in “natural” isotopic abundance, spectra of highly enriched CH3D and 13CH4 samples were recorded with the same experimental setup, both at room temperature and at 80 K.From the variation of the line strengths between 80 K and 294 K, the low energy values of about 12,000 transitions were determined. They allow accounting for the temperature dependence of 84 and 93% of the methane absorbance in the region, at room temperature and 80 K, respectively. As a result, we provide as supplementary material two complete line lists at 80 K and 294 K, including CH3D and 13CH4 identification and lower state energy values.  相似文献   

6.
The spectra of water vapor enriched by 18O were recorded in the 1000–2300 cm?1 spectral range, which corresponds to the spectral region studied by IASI instrument (Infrared Atmospheric Sounding Spectrometer) instrument. The spectra were recorded by a step by step Fourier Transform Spectrometer (FTS) at room temperature with absorption path lengths up to 36 m. Positions, intensities and self broadening coefficients of about 1800 lines of H218O and 900 of HD18O were analyzed and all the transitions were assigned. This paper focuses on lines intensities and comparisons with data from literature are presented. An average difference of 10% with HITRAN2008 database H218O line intensities is found with a maximum discrepancy of about 25% for the ν1ν2 band.  相似文献   

7.
The room-temperature nitrogen- and oxygen-broadening coefficients of hydrogen cyanide spectral lines have been measured in the 0.5–3 THz (17–100 cm?1) frequency range (purely rotational transitions with 5?J?36) by a continuous-wave terahertz spectrometer based on a photomixing source. An improved version of the Robert and Bonamy semiclassical formalism has been used to calculate the oxygen-broadening coefficients and resulted in a good agreement with these measurements. The nitrogen and oxygen data are combined to provide the air-broadening coefficients as used by the HITRAN database. A significant difference is observed between the measured and tabulated values for transitions with high values of the rotational quantum number. A new polynomial representation is suggested for inclusion in HITRAN. A similar polynomial expression has been derived for the nitrogen broadening to aid the studies of Titan's atmosphere.  相似文献   

8.
Intensities of about 320 lines of the 12C2H2 molecule, belonging to 7 parallel bands, are measured in the 1.3, 1.2, and 1 μm spectral regions, with a mean accuracy around 3% or 7% depending on the spectral region. Vibrational transition dipole moment squared values and Herman-Wallis coefficients are obtained for each band, in order to model the rotational dependence of the transition dipole moment squared, except for the ν1+ν3+2ν40 band at 7732.78 cm?1 that exhibits an unusual rotational dependence because of a strong ?-type resonance. HITRAN format line lists are set up for applications.  相似文献   

9.
A complete spectroscopic study of 15 strong ozone lines in the 1132.5–1134.5 cm?1 spectral range has been undertaken in the framework of the development of the stratospheric wind interferometer for transport studies (SWIFT), led by the Canadian Space Agency. Measurements have been performed with an interferometrically stabilized tunable diode laser spectrometer. Absolute line positions and intensities have been determined with high accuracy (4×10?5 cm?1 and 1–2% respectively). Self- and air-broadening coefficients at 296 K have been obtained with an accuracy of 1%. The air-shifting coefficient and its temperature dependence have also been measured for unblended lines together with the temperature dependence of the air-broadening. Line intensities have been calibrated by simultaneously performed UV absorption measurements at 253.7 nm. Our IR/UV comparison supports a previously reported inconsistency between recommended IR intensities (HITRAN08) and UV absorption cross-sections and indicates that current IR intensities are too small by ~3%.  相似文献   

10.
The absorption spectrum of methyl cyanide (CH3CN) has been measured in the near IR between 6000 and 8000 cm?1 with a resolution of 0.12 cm?1 using Fourier transform incoherent broadband cavity-enhanced absorption spectroscopy. The spectrum contains several weakly perturbed spectral regions; potential vibrational combination bands contributing to the spectrum are outlined. Line positions and cross-sections of CH3CN between 6814 and 7067 cm?1 have been measured at high-resolution of 0.001 cm?1 using diode laser based off-axis cavity-enhanced absorption spectroscopy. A total of 4630 new absorption lines of CH3CN are identified in this region. A value for the self-broadening coefficient has determined to be (3.3±0.2)×10?3 cm?1 mbar?1 for one isolated line at 7034.171 cm?1. Several line series have been identified in these regions and an autocorrelation analysis performed with a view to aiding future assignments of the rotational-vibrational transitions.  相似文献   

11.
The integrated intensities, self- and air-broadening coefficients of thirteen transitions of H216O in the 11980–12260 cm?1 region, belonging to the 2ν1+ν2+ν3 band, were measured. Using a tunable diode laser system, spectra were recorded at room temperature for a wide range of pressure (2–15 Torr for pure H2O and 50–760 Torr for H2O in air). Line parameters were adjusted from experiments using three line-shape models: the Voigt profile (VP), the (hard collision) Rautian profile (RP) and the speed dependent Voigt profile (SDVP). The results show that the RP and SDVP are in better agreement with measurements than the VP and that they lead to larger values of the line parameters (about 5% for the line broadening, and 0.8% for the line intensity). Comparisons of the present results with HITRAN 2008 [Rothman et al., JQSRT 2009, 110:533-72] show that the HITRAN intensities of the studied lines are overestimated by about 9.4%, suggesting a more complete study of the H2O line parameters in the considered region. The Dicke narrowing and speed dependence parameters deduced from this work are also presented and discussed, demonstrating the need for a more refined line-shape model.  相似文献   

12.
The “Spectroscopic database of CO2 line parameters: 4300–7000 cm–1” constructed by Toth et al., has been considered in relation with our previous and current studies of the absorption spectrum of carbon dioxide (CO2) by high-sensitivity CW-cavity ring down spectroscopy (CW-CRDS) in the 5850–7000 cm?1 region. Part of the line parameters of the database are based on accurate spectroscopic measurements by Fourier transform spectroscopy (FTS) but Toth et al. have chosen to fix to a very low value (4×10?30 cm/molecule) the lower intensity cut off. This value which is far below the FTS detection limit has led to long range extrapolations to high J values and to the inclusion of weak unobserved bands which were theoretically predicted. In the 5850–7000 cm?1 region, most of these calculated transitions were previously observed by CW-CRDS. The comparison with the CW-CRDS 13CO2 spectrum in this region, has evidenced that (i) many weak bands above the intensity cut off are missing; (ii) there are important deviations between the line parameters provided in the database and our previous observations both for line positions (up to 1.7 cm?1) and line intensities (up to a factor 80). Our discussion was limited to the three 13C species (13C16O2, 16O13C18O and 16O13C17O) but the conclusions should apply to the other isotopologues in particular 12C16O2 and to the full spectral range of the database.Alternatively, the global effective operators models for CO2 can reproduce satisfactorily all the experimental line positions and line intensities available in the literature. This polyad model, which has been developed for most of the CO2 isotopologues, constitutes an interesting alternative for the most accurate and complete CO2 database. In particular, very weak bands, accidental resonances, intensity transfers and extra lines are accurately accounted for and predicted by this polyad model.  相似文献   

13.
In our effort to systematically study the far infrared (FIR) spectra of asymmetrically mono deuterated methanol (CH2DOH) and thereby obtain the transition wavenumbers with better and better accuracy (Mukhopadhyay, 2016a,b), the complete Fourier transform (FT) spectra from FIR to infrared (IR) vibrational bands (in the range 50–1190 cm−1) have been re-recorded using the Synchrotron Radiation Source at the Canadian Light Sources in Saskatchewan, Canada. The resolution of the spectrum is unprecedented, reaching beyond the Doppler limited resolution as low as about 0.0008 cm−1 with a signal to noise (S/N) ratio is many fold better than that can be obtained by commercially available FT spectrometer using thermal sources (e.g., Globar). Spectra were also recorded beyond 1190 cm−1 to about 5000 cm−1 at a somewhat lower resolution of 0.002–0.004 cm−1. In this report the analysis of the b-type and c-type torsional - rotational spectra in the ground vibrational state corresponding to gauche- (e1/o1) to gauche- (e1/o1) and gauche- (e1/o1) to trans- (e0) states in the ground vibrational state are reported and an atlas of the wavenumber for about 2500 FIR assigned absorption lines has been prepared. The transitions within a given sub-band are analyzed using state dependent expansion parameters and the Q-branch origins. The data from previous results (Mukhopadhyay, 2016a,b) along with the present work allowed a global analysis yielding a complete set of molecular parameters. The state dependent molecular parameters reproduce the experimental wavenumbers within experimental uncertainty. In addition, the sensitivity of the spectrum allowed observation of forbidden transitions previously unobserved and helped reassignment of rotational angular momentum quantum numbers of some ΔK = ±1, Q-branch transitions in highly excited states recently reported in the literature. To our knowledge the wavenumbers reported in the present work are the most accurate so far reported in the literature and represent the highest resolution spectra for this molecular species.  相似文献   

14.
New line lists for isotopically substituted water are presented. Most line positions were calculated from experimentally determined energy levels, while all line intensities were computed using an ab initio dipole moment surface. Transitions for which experimental energy levels are unavailable use calculated line positions. These line lists cover the range 0.05–20 000 cm?1 and are significantly more complete and potentially more accurate than the line lists available via standard databases. All lines with intensities (scaled by isotopologue abundance) greater than 10?29 cm/molecule at 296 K are included, augmented by weaker lines originating from pure rotational transitions. The final line lists contain 39 918 lines for H218O and 27 546 for H217O and are presented in standard HITRAN format. The number of experimentally determined H218O and H217O line positions is, respectively, 32 970 (83% of the total) and 17 073 (62%) and in both cases the average estimated uncertainty is 2×10?4 cm?1. The number of ab initio line intensities with an estimated uncertainty of 1% is 16 621 (42%) for H218O and 13 159 (48%) for H217O.  相似文献   

15.
Absorption cross sections of SO2 have been obtained in the 24 000–29 000 cm?1 spectral range (345–420 nm) with a Fourier transform spectrometer at a resolution of 2 cm?1. Pure SO2 samples were used and measurements were performed at room temperature (298 K) as well as at 318, 338 and 358 K. This is the first time that temperature effects in this spectral region are reported and investigated. This paper is the first of a series that will report on measurements of the absorption cross section of SO2 in the UV/visible region at a higher than previously reported resolution and that will investigate temperature effects in support of tropospheric, stratospheric and astrophysical or planetary applications.  相似文献   

16.
This paper describes new measurements and modelling of the absorption of methane gas, one of the most important gases observed in the atmospheres of the outer planets and Titan, between 9000 and 14,000 cm?1 (0.7 to 1.1 μm) and compares them with current best available spectral models.A series of methane spectra were measured at the UK's Natural Environment Research Council (NERC) Molecular Spectroscopy Facility (based at the Rutherford Appleton Laboratory, Oxfordshire, UK) using a Brüker 125HR Fourier transform spectrometer. To approximate the conditions found in outer planet atmospheres, the spectra were measured over a wide range of pressures (5 bar to 38 mbar) and temperatures (290–100 K) with path lengths of 19.3, 17.6, 16.0 and 14.4 m. The spectra were recorded at a moderate resolution of 0.12 cm?1 and then averaged to 10 cm?1 resolution prior to fitting a series of increasingly complex band-models including temperature dependence. Using the most complex model, a Goody line distribution with a Voigt line shape and two lower energy state levels, the typical rms residual error in the fit is between 0.01 and 0.02 in the wings of the main absorption bands.The new spectral parameters were then compared with the measured spectra and spectra calculated using existing data and shown to be able to accurately reproduce the measured absorption. The improvement in the temperature dependence included in the model is demonstrated by comparison with existing cold methane spectral data for a typical Jovian path.  相似文献   

17.
Using both high resolution (0.0018 cm?1) and medium resolution (0.112 cm?1) Fourier transform spectra of an enriched 34S (95.3%) sample of sulfur dioxide, it has been possible to accurately measure a large number of individual line intensities for some of the strongest of the SO2 bands, i.e. ν1, ν3 and ν1+ν3. These intensities were least-squares fitted using a theoretical model which takes into account the vibration–rotation interactions linking the upper energy levels where needed, and, in this way, expansions of the various transition moment operators were determined. The Hamiltonian parameters determined in previous analyses together with these moments were then used to generate synthetic spectra for the bands studied and their corresponding hot bands providing one with an extensive picture of the absorption spectrum of 34SO2 in the spectral domains, 8.7, 7.4, and 4 μm.  相似文献   

18.
The absorption spectrum of water vapor in “natural” isotopic abundance has been recorded by high sensitivity CW-Cavity Ring Down Spectroscopy (CW-CRDS) between 6885.79 and 7405.91 cm?1. This strong absorbing region includes the first hexad of interacting vibrational bands which was previously studied by Fourier Transform Spectroscopy. The achieved sensitivity of the recordings varies from αmin~2×10–11 to 2×10?10 cm?1 allowing us to use a sample pressure of 0.1 Torr, making pressure broadening of the line profile mostly negligible. Weak lines in the vicinity of much stronger lines could then be accurately measured. The weakest lines have intensity on the order of 5×10–28 cm/molecule at 296 K. A set of 4471 lines were assigned to 4916 transitions of five water isotopologues (H2 16O, H2 18O, H2 17O, HD16O and HD18O). A small number of new energy levels was determined mostly for the H2 17O isotopologue. The previous investigations and existing databases are critically evaluated. In particular, a number of corrections and new assignments are proposed for the water list provided by the HITRAN database in the considered region. As a result, a complete list of 12,700 transitions for water in “natural” isotopic abundance is provided as Supplementary Material for the 6885–7408 cm?1 region.  相似文献   

19.
Nearly 4800 features of ammonia between 6300 and 7000 cm?1 with intensities ≥4×10?24 cm?1/(molecule·cm?2) at 296 K were measured using 16 pure NH3 spectra recorded at various temperatures (296–185 K) with the McMath–Pierce Fourier Transform Spectrometer at Kitt Peak National Observatory, AZ. The line positions and intensities were retrieved by fitting individual spectra based on a Voigt line shape profile and then averaging the values to form the experimental linelist. The integrated intensity of the region was 4.68×10?19 cm?1/(molecule·cm?2) at 296 K. Empirical lower state energies were also estimated for 3567 absorption line features using line intensities retrieved from 10 spectra recorded at gas temperature between 185 and 233 K. Finally, using Ground State Combination Differences (GSCDs) and the empirical lower state energy estimates, the quantum assignments were determined for 1096 transitions in the room temperature linelist, along with empirical upper state energies for 434 levels. The assignments correspond to seven vibrational states, as confirmed from recent ab initio calculations. The resulting composite database of 14NH3 line parameters will provide experimental constraints to ab initio calculations and support remote sensing of gaseous bodies including the atmospheres of Earth, (exo)planets, brown dwarfs, and other astrophysical environments.  相似文献   

20.
Following our recent study devoted to measurements of intensities of pure rotation lines of methane, room temperature far infrared spectra of methane diluted in nitrogen at five total pressures between 100 and 800 hPa have been recorded at the AILES beamline of the SOLEIL synchrotron. One hundred and five N2 broadening coefficients of methane pure rotation lines have been measured in the 83–261 cm?1 spectral range using multi-spectrum non-linear least squares fitting of Voigt profiles. Pressure-induced line shifts were not needed to fit the spectra to the noise level and line mixing effects were neglected. One hundred and seventy-six self broadening coefficients have also been measured in the 59–288 cm?1 spectral range using the pure methane spectra recorded in our previous work. The measured N2 broadening coefficients were compared to semi-classical calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号