首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have applied the NRL tight-binding (TB) method to study the mechanical and electronic properties of the heavy elements Pb and Po. The predicted properties include ground-state structure, electronic band structure and elastic moduli. Phonon-dispersion curves at T=0 K were also determined. As demonstrated in this paper, the results are in good agreement with the full potential linearized augmented plane wave calculations and the available experimental data. In addition, we performed molecular-dynamics simulations to obtain various temperature-dependent quantities of Pb such as the atomic mean-square displacement, Debye-Waller factor and thermal expansion coefficient. With our TB we have also calculated the vacancy formation energy of Pb. Finally, we report on the effects of spin-orbit coupling, through our TB scheme, on electronic structure and energetic properties.  相似文献   

2.
The photoconductivity of BaTiO2.5 with oxygen vacancy has been studied by the linear muffin-tin orbital method in the atomic sphere approximation (LMTO-ASA). The ground-state structure of BaTiO2.5 is obtained by minimization of the total energy. The partial densities of states show that the occupied states at the bottom of the conduction band have primarily Ti d orbital character. The photoconductivity shows that two novel features, in the low energy side, can be attributed to the intraband transition of free electronic carriers in the vicinity of the Fermi level and the interband transition of the Ti 3d(yz) related band states, to the Ti 3d(xy,xz) related band states, respectively. In addition, it is also found that the anisotropy of photoconductivity is enhanced because of the introduction of oxygen vacancy. The system can show the conductive behavior of electronic carriers, which is qualitatively in agreement with a recent experimental finding.  相似文献   

3.
The ground-state properties of NiO have been investigated using the all-electron full-potential linearized augmented plane wave (FLAPW) and the so-called LSDA (GGA)+U (LSDA—local-spin-density approximation; GGA—generalized gradient approximation) method. The calculated result indicates that our estimation of U is in good agreement with experimental data. It is also found that none of the LSDA (GGA) methods is able to provide, at the same time, accurate electronic and structural properties of NiO. Although the GGA+U method can properly predict the electronic band gap, it overestimates the lattice constant and underestimates the bulk modulus. Then only the LSDA+U method accurately reports the electronic and structural properties of NiO. The calculated band gap and the density of states (DOS) show that the material NiO is the charge-transfer insulator, which agrees with the spectroscopy data. The comparison between the charge density of LSDA (not considering U) and that of LSDA+U (considering U) demonstrates that the trend of ionic crystal for NiO is obvious.  相似文献   

4.
A new handshake scheme is presented for tight-binding (TB) and molecular dynamics (MD) for multi-scale simulation of covalent crystals. In the present scheme, when calculating the forces on MD atoms in the handshake region, the TB atoms in close proximity to the MD atoms are treated as MD atoms. The scheme is thus seamless for calculation of MD atoms. When determining the electronic states of the TB subsystem, instead of the four basic atomic orbitals, hybrid orbitals are employed as bases in TB method and also as representing the action of MD atoms on TB atoms. The present handshaking methodology has several advantages. Firstly, it avoids determining the physical parameters required by introducing a new orbital model. Secondly, the “seam” almost decreases by one order of magnitude compared to that of Silogen model. Thirdly, the whole scheme is stable for dynamic simulation.  相似文献   

5.
An expression for the calculation of 3d electronic band structures of metallic nickel is given in the tight-binding scheme using the extended Hu¨ckel method. An explicit formulation in the nearest neighbor approximation is given and the accuracy of the nearest neighbor approximation is discussed. It is found that when a combination of two Slater wave functions is used for each 3d orbital, and when overlap matrix elements between neighbors are included until convergence is achieved, the resulting 3d band structures and band width agree well with those obtained from ab initio tight-binding calculations. For nickel, this calculation gives a 3d band width of 2.48 eV, a degeneracy temperature of 2.8 × 103 K and a linear, low temperature electronic heat coefficient of 1.9 × 10?3 cal mol?1 deg?2.  相似文献   

6.
Local electronic structures around Ga and Mn in Mn-doped GaN film with Tc of 940 K are investigated by K X-ray absorption near edge structure (XANES) analysis. It was found that the shape of the Ga XANES spectrum is remarkably similar to that of the un-doped GaN film indicating that the local electronic structure around Ga is not disturbed with Mn doping. As for the Mn XANES spectra, obvious pre-edge peaks were observed: the fine structures in the pre-edges correspond with calculated Mn 3d partial density of states which predict impurity band formation with the Fermi energy stays in the spin-up band. These findings imply that Mn 3d levels stay within the gap with the Fermi energy stays in the spin-up band.  相似文献   

7.
We report a comparative study of the magnetic properties of free-standing PdN clusters (2 ≤N ≤21) obtained through two different theoretical approaches that are extensively employed in electronic structure calculations: a semi-empirical Tight-Binding (TB) model and an ab-initio DFT pseudopotential model. Conclusions are drawn about the reliability of the TB model for the investigation of the electronic structure and magnetic properties of such complex 4d Transition Metals (TM) systems and we compare the results with previous systematic DFT calculations and comment on some available experiments in the literature.  相似文献   

8.
We have compared results of electronic transport using two different approaches: Dirac vs tight-binding (TB) Hamiltonians to assesses disorder-induced effects in graphene nanoribbons. We apply the proposed Hamiltonians to calculate the density of states, the transmission along the ribbon, and the pseudo-spin polarization (P(E)) in metallic armchair graphene nanoribbons. We clearly show differences between these two approaches in the interference processes, especially in the low-lying energy limit, when the systems are found in the presence of random impurities (disorder). This allows us to find fingerprints associated with each model used. As the disorder increases, more robust electronic transmission (through polarized states in a given sublattice) arises when one is dealing with the Dirac model only. We also find with this model unexpected peaks in the P(E) far from the Dirac point for wider nanoribbons. In the other hand, the model TB show the Dirac limit with disturbances of the hyperboloid subbands for certain potentials of the impurities. In general, our study is indicating that a P(E) spectroscopy (analyzing the line width and intensity) can be used to detect fingerprints of the increase of asymmetry in the scattering processes and the transport limits where hyperboloid subbands are important.  相似文献   

9.
PbPdO?, a ternary compound containing the lone pair active ion Pb2? and the square planar d?Pd2? ion, has attracted recent interest because of the suggestion that its electronic structure, calculated within density functional theory using either the local density or the generalized gradient approximation, displays zero-gap behavior. In light of the potential ease of doping magnetic ions in this structure, it has been suggested that the introduction of spin, in conjunction with zero band gap, can result in unusual magnetic ground states and unusual magnetotransport. It is known that most electronic structure calculations do not properly obtain a band gap even for the simple oxide PdO, and instead obtain a metal or a zero-gap semiconductor. Here we present density functional calculations employing a screened hybrid functional which correctly obtain a band gap for the electronic structure of PdO. When employed to calculate the electronic ground state of PbPdO?, a band gap is again obtained, which is consistent with both the experimental data on this compound, as well as a consideration of valence states and of metal-oxygen connectivity in the crystal structure. We also present comparisons of the absolute positions (relative to the vacuum level) of the conduction band minima and the valence band maxima in α-PbO, PdO and PbPdO?, which suggest ease of p-type doping in PbPdO?, that has been observed even in nominally pure materials.  相似文献   

10.
The electronic structures of lanthanum chromites, pure and doped with magnesium and strontium, have been studied in comparison with Cr2O3 and La2O3 through the use of X-ray photo-electron spectroscopy. The main peaks and satellites of inner and outer electrons are properly assigned. The band structure of LaCrO3 is determined by using the XPS data and a calculation based on point charge model. The partially filled Cr(3d) band is localized. The conduction is mainly extrinsic. The measured Fermi-level is close to the valence band indicating a low activation energy in agreement with the results of conductivity measurements.  相似文献   

11.
CdTe和HgTe电子结构的紧束缚模型计算   总被引:1,自引:0,他引:1  
基于局域密度近似(LDA或GGA)的密度泛函理论计算往往低估体系的禁带宽度,而这一低估对窄带隙半导体尤为严重.尽管基于混合泛函的密度泛函理论能有效地修正这一误差,但是由于计算量较大仍无法用于计算较大体系.本文发展了一组能够比较准确描述CdTe和HgTe晶体电子结构的紧束缚参数.将基于混合泛函的密度泛函计算结果作为输入,我们构建了正交的sp~3s~*基组下的紧束缚模型.此模型能够比较准确地描述能带结构在费米面附近4 eV范围内的色散关系.利用当前模型计算了CdTe和HgTe非晶的电子态密度,计算结果与他人的理论计算和实验值符合较好.  相似文献   

12.
In this paper, dispersive properties of three-dimensional (3D) photonic crystals (PCs) with face-centered-cubic (fcc) lattices composed of the isotropic positive-index materials and epsilon-negative materials are theoretically investigated based on a modified plane wave expansion (PWE) method. The eigenvalue equations of such structure (spheres with epsilon-negative materials inserted in the dielectric background) are deduced. The band structures can be obtained by solving such nonlinear eigenvalue equations. It can be obviously seen that a photonic band gap (PBG), a flat band region, and two stop band gaps (SBGs) in the Г-X and Г-L directions appear, respectively. The results show that the upper edges of flat band region cannot be tuned by any parameters except for the electronic plasma frequency. The first PBG and the first SBGs above the flat band region in the Г-X and Г-L directions for the 3D PCs can be modulated by the filling factor, relative dielectric constant and electronic plasma frequency, respectively. However, the damping factor has no effect on the locations of the first PBG and the first SBGs above the flat band region in the Г-X and Г-L directions. These results may provide theoretical instructions to design the future optoelectronic and communication devices containing epsilon-negative materials.  相似文献   

13.
By applying non-equilibrium Green's functions (NEGF) in combination with tight-binding (TB) model, we investigate and compare the electronic transport properties of perfect and defected bilayer armchair graphene nanoribbons (BAGNRs) under finite bias. Two typical defects which are placed in the middle of top layer (i.e. single vacancy (SV) and stone wale (SW) defects) are examined. The results reveal that in both perfect and defected bilayers, the maximum current refers to β-AB, AA and α-AB stacking orders, respectively, since the intermolecular interactions are stronger in them. Moreover it is observed that a SV decreases the current in all stacking orders, but the effects of a SW defect is nearly unpredictable. Besides, we introduced a sequential switching behavior and the effects of defects on the switching performance is studied as well. We found that a SW defect can significantly improve the switching behavior of a bilayer system. Transmission spectrum, band structure, molecular energy spectrum and molecular projected self-consistent Hamiltonian (MPSH) are analyzed subsequently to understand the electronic transport properties of these bilayer devices which can be used in developing nano-scale bilayer systems.  相似文献   

14.
We present the results of ab initio density functional theory calculations on the energetic, and geometric and electronic structure of Li-intercalated (6,6) silicon carbide nanotube (SiCNT) bundles. Our results show that intercalation of lithium leads to the significant changes in the geometrical structure. The most prominent effect of Li intercalation on the electronic band structure is a shift of the Fermi energy which occurs as a result of charge transfer from lithium to the SiCNTs. All the Li-intercalated (6,6) SiCNT bundles are predicted to be metallic representing a substantial change in electronic properties relative to the undoped bundle, which is a wide band gap semiconductor. Both inside of the nanotube and the interstitial space are susceptible for intercalation. The present calculations suggest that the SiCNT bundle is a promising candidate for the anode material in battery applications.  相似文献   

15.
The dynamic properties of a double period (DP) structure with a 90° partial dislocation were investigated by atomic simulation methods in Si. By the use of molecular dynamics (MD) method, the motion sequences of kinks and reconstruction defect (RD) of DP structure were obtained. Based on the conjugate gradients (CG) results and tight-binding (TB) potential, the formation energies Ef of kinks were computed. In addition, the migration barriers Wm of kinks were also calculated via nudged elastic band (NEB) method with TB potential. The results show that Ef is smaller than Wm, which means that the migration barrier of kink dominates the motion of DP structure. According to the activation energies of short dislocation segments (2.17 eV) and long dislocation segments (1.61 eV), we predict that the experimental results may be between these two values.  相似文献   

16.
Thermoelectric properties and electronic structure of Al-doped ZnO   总被引:1,自引:0,他引:1  
Impure ZnO materials are of great interest for high temperature thermoelectric application. In this work, we present the effects of Al-doping on the thermoelectric properties and electronic structures of a ZnO system. We find that, with increasing Al concentrations, the electrical conductivity increases and the thermal conductivity decreases significantly, whereas, the Seebeck coefficient decreases slightly. Nevertheless, the figure of merit (ZT) increases owing to high electrical conductivity and low thermal conductivity. On the other hand, the electronic band structures show that the position of the Fermi level is moved upwards and the bands split near the valence-band top and conduction-band bottom. This is due to the interaction between the Al3p and Zn4s orbitals, which drive the system towards semimetal. Besides, the Density Of States (DOS) analysis shows that the introduction of Al atom obviously reduces the slope d(DOS)/dE near the Fermi level. Based on the calculated band structures, we are able to explain qualitatively the measured transport properties of the Al-doped ZnO system.  相似文献   

17.
We report theoretical investigations on the surface electronic structure of the (110)-face of SnO2, a semiconductor of rutile bulk structure. Starting with a tight binding Hamiltonian for the bulk, we determine the surface electronic structure using the scattering theoretic method. As results we obtain the surface bound states, the surface resonances and the wave-vector resolved surface layer densities of states. The dominant features are two backbond states in the stomach gap of the main valence band and two Sn-s derived states in the lower conduction band region. In the upper valence band region, only weak resonances occur, like in other materials with relatively strong ionicity.  相似文献   

18.
The participation of 3d electrons in chemical bonds and their part in the formation of valence bands was studied by X-ray photoelectron- and X-ray-spectroscopy for Cu, Zn and Ga phosphides, sulphides and oxides. Incomplete screening of (n + 1)s,p electrons through the nd shell leads to non-systematic changes of orbital energies and radii of the valence electrons in the first, second and third Group elements. It is reflected in the electronic structure of the respective compounds. A qualitative interpretation of XPS and XRS data for Cu, Zn, Ga phosphides is given. Possible reasons for phosphorus s band splitting for zinc and copper phosphides are considered. The interaction of 3d metal states and 3s, p third Period element states considerably affects the valence band of compounds, and this interaction should be taken into account when considering electronic structures of Cu, Zn and Ga compounds.  相似文献   

19.
20.
The processes of the excitation energy transfer to the emission centers have been investigated for calcium tungstate crystals taking into account features of the electronic structure of valence band and conduction band. The calculations of the electronic structure of host lattice CaWO4 were performed in the framework of density functional theory. The underestimation of the bandgap value in the calculations has been corrected according to the experimental data. Luminescence of two samples grown using Czochralski (cz) and hydrothermal (ht) techniques were studied. Intrinsic emission band related to excitons, self-trapped on WO4 complexes has been observed for the both samples while the additional low-energy emission band related to the defects of crystal structure has been observed only for (ht) sample indicating the enhanced concentration of the defects in the sample. It was shown that the features of the conduction band electronic structure are reproduced in the excitation spectrum of intrinsic luminescence only for the (ht) sample while for (cz) sample the correlation is absent. The enhanced role of the competitive channels in the process of excitation energy transfer to intrinsic emission centers in (ht) sample is responsible for the observed difference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号