首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of borophosphate glasses in the composition (B2O3)0.10–(P2O5)0.40–(CuO)0.50?x–(MoO3)x; 0.05 ? x ? 0.50 have been investigated for room temperature density and dc conductivity over the temperature range from 350 to 650 K. The density decreased with increase in MoO3 over the composition range studied except a slight increase around 0.35 mole fraction. The observed initial decrease in conductivity with the addition of MoO3 has been attributed to the hindrance offered by the Mo+ ions to the electronic motions. The observed peak-like behavior in conductivity in the composition range 0.20 – 0.50 mol% of MoO3 is ascribed to the mixed transition metal ion effect (MTE). Mott’s small polaron hopping model has been used to analyze the high temperature conductivity data and the activation energy for conduction has been determined. The low temperature conductivity has been analyzed in view of Mott’s and Greaves variable range hopping models. It is for the first time that conduction mechanisms have been explored and MTE detected in mixed transition metal ions doped borophosphate glasses.  相似文献   

2.
《Journal of Non》2007,353(44-46):4137-4142
Amorphous tungsten trioxide (a-WO3) thin films were prepared by thermal evaporation technique. The electrical conductivity and dielectric properties of the prepared films have been investigated in the frequency range from 100 Hz to 100 kHz and in the temperature range 293–393 K. In spite of the absence of the dielectric loss peaks, application of the dielectric modulus formulism gives a simple method for evaluating the activation energy of the dielectric relaxation. The frequency dependence of σ(ω) follows the Jonscher’s universal dynamic law with the relation σ(ω) = σdc + s, where s is the frequency exponent. The conductivity in the direct regime, σdc, is described by the small polaron model. The electrical conductivity and dielectric properties show that Hunt’s model is well adapted to a-WO3 films.  相似文献   

3.
《Journal of Non》2005,351(40-42):3235-3245
The electrical and dielectrical properties of Bi2O3–Fe2O3–P2O5 glasses were measured by impedance spectroscopy in the frequency range from 0.01 Hz to 4 MHz and over the temperature range from 303 to 473 K. It was shown that the dc conductivity strongly depends on the Fe2O3 content and Fe(II)/Fetot ratio. With increasing Fe(II) ion content from 17% to 34% in the bismuth-free 39.4Fe2O3–59.6P2O5 and 9.8Bi2O3–31.7Fe2O3–58.5P2O5 glasses, the dc conductivity increases. On the other hand, the decrease in dc conductivity for the glasses with 18.9 mol% Bi2O3 is attributed to the decrease in Fe2O3 content from 31.7 to 23.5 mol%, which indicates that the conductivity for these glasses depends on Fe2O3 content. The conductivity for these glasses is independent of the Bi2O3 content and arises mainly from polaron hopping between Fe(II) and Fe(III) ions suggesting an electronic conduction. The evolution of the complex permittivity as a function of frequency and temperature was investigated. At low frequency the dispersion was investigated in terms of dielectric loss. The thermal activated relaxation mechanism dominates the observed relaxation behavior. The relationship between relaxation parameters and electrical conductivity indicates the electronic conductivity controlled by polaron hopping between iron ions. The Raman spectra show that the addition of up to 18.9 mol% of Bi2O3 does not produce any changes in the glass structure which consists predominantly of pyrophosphate units.  相似文献   

4.
Lithium yttrium silicate glasses mixed with different concentrations of Fe2O3 of the composition (40 ? x) Li2O–10Y2O3–50SiO2: x Fe2O3, with x = 0.3, 0.5, 0.8, 1.0, 1.2 and 1.5 (all in mol%) were synthesized. Electrical and dielectric properties including dielectric constant, ε′(ω), loss, tan δ, ac conductivity, σac, impedance spectra as well as electric moduli, M(ω), over a wide continuous frequency range of 40 Hz to 106 Hz and in the low temperature range 100 to 360 K were measured as a function of the concentration of Fe2O3. The dc conductivity is also evaluated in the temperature range 100 … 360 K. The temperature and frequency dispersions of dielectric constant as well as dielectric loss have been analyzed using space charge polarization model. The ac and dc conductivities have exhibited increasing trend with increasing Fe2O3 content beyond 0.5 mol%, whereas the activation energy for the conductivity demonstrated decreasing tendency in this dopant concentration range. Both quantum mechanical tunneling (QMT) and correlated barrier hopping models (CBH) were used for clarification of ac conductivity origin and the corresponding analysis has indicated that CBH model is more appropriate for this glass system. For the better understanding of relaxation dynamics of the electrical properties we have drawn the scaling plots for ac conductivity and also electric moduli. The plots indicated that the relaxation dynamics is independent on temperature but depends on concentration of Fe2O3. The dc conductivity is analyzed using small polaron hoping model. The increase of conductivity with the concentration of Fe2O3 beyond 0.5 mol% is explained in terms of variations in the redox ratio of iron ions in the glass network. The results were further analyzed quantitatively with the support of experimental data from IR, optical absorption and ESR spectral studies. The overall analysis has indicated that Li2O–Y2O3–SiO2 glasses containing more than 0.5 mol% of Fe2O3 are more suitable for achieving good electrical conductivity in these glasses.  相似文献   

5.
The electrical conductivity and dielectric properties of xB2O3–(40 ? x)Fe2O3–60P2O5 (x = 6–20, mol%) glasses were investigated in the frequency range from 0.01 Hz to 1 MHz and the temperature range from 303 K to 523 K. At temperatures below 523 K an ac conductivity and the dielectric constant follow the universal dielectric response (UDR), being typical for hopping or tunneling of localized charge carriers. A detailed analysis of the temperature dependence of the UDR parameter s in terms of the theoretical model for tunneling of small polarons revealed that below 523 K this mechanism governs the charge transport in these glasses. The comparison of the values of characteristic coefficients W and α determined by two different methods confirms the polaronic behavior of boron doped iron phosphate glasses.  相似文献   

6.
《Journal of Non》2007,353(47-51):4395-4399
The electrical properties of (40−x)ZnO–xFe2O3–60P2O5 (x = 10, 20, 30 mol%) glasses were measured by impedance spectroscopy in the frequency from 0.01 Hz to 4 MHz and the temperature range from 303 to 473 K. It was shown that the dc conductivity strongly depends on the Fe2O3 content and Fe(II)/Fetot ratio. The increase in dc conductivity for these glasses is attributed to the increase in Fe2O3 content from 10 to 30 mol%. With increasing Fe(II) ion content from 6% to 17% the dc conductivity increases. This indicated that the conductivity arises mainly from polaron hopping between Fe(II) and Fe(III) ions suggesting an electron conduction in these glasses. By applying scaling on conductivity data measured at different temperatures, single master curve was obtained for each glass. On the other hand, deviation from the master curve at high frequencies was observed for glasses with different compositions. This deviation originates from a various mobility of charge carriers in different glass structures. Raman spectra showed the change of structure, from metaphosphate to pyrophosphate, with increasing Fe2O3 content from 10 to 30 mol%.  相似文献   

7.
The electrical properties of n-type titanium dioxide thin films deposited by magnetron-sputtering method have been investigated by temperature-dependent conductivity. We observed that the temperature dependence of the electrical conductivity of titanium dioxide films exhibits a crossover from T?1/4 to T?1/2 dependence in the temperature range between 80 and 110 K. Characteristic parameters describing conductivity, such as the characteristic temperature (T0), hopping distance (Rhop), average hopping energy (Δhop), Coulomb gap (ΔC), localization length (ξ) and density of states (N(EF)), were determined, and their values were discussed within the models describing conductivity in TiO2 thin films.  相似文献   

8.
《Journal of Non》2007,353(13-15):1322-1325
In the present paper the effect of Bi impurity (low ∼4 at.% and high ∼10 at.%) on the ac conductivity (σac) of a-Ge20Se80 glassy alloy is studied and the experimentally deduced values are fitted with theoretically deduced values by using correlated barrier hopping model (CBH). Frequency dependent ac conductance of the samples over a frequency range of 100–50 kHz has been taken in the temperature range (268–360 K). At frequency 2 kHz and temperature 298 K, the value of ac conductivity (σac) decreases at low concentration of Bi (4 at.%). However, the value of σac increases at higher concentration of Bi (10 at.%). The ac conductivity is proportional to ωs for undoped and doped samples. The value of frequency exponent (s) decreases as the temperature increases. These results have been explained on the basis of some structural changes at low and high concentration of Bi impurity.  相似文献   

9.
LiI–AgI–B2O3 glasses mixed with different concentrations of V2O5 (ranging from 0 to 1.0 mol%) were prepared. Electrical and dielectric properties over wide ranges of frequency (10?2–107 Hz) and temperature (173–523 K) have been studied. Additionally spectroscopic properties viz., optical absorption and ESR spectra have been investigated. The optical absorption and ESR studies have revealed that vanadium ions do exist in both V4+ and V5+ states and the redox ratio is the highest in the glasses containing 0.8 mol% of V2O5. The results of conductivity measurements have indicated that there is a mixed conduction (both ionic and electronic). The ionic conduction seems to be dominant over polaron hopping only in the glasses containing V2O5 more than 0.8 mol% of V2O5. The impedance spectra have also indicated that the conduction is predominantly polaronic in nature. The frequency and temperature dependence of the electrical moduli as well as dielectric loss parameters have exhibited relaxation character attributed to the vanadyl complexes. The relaxation effects have been analyzed by the graphical method and from this analysis it has been established that there is a spreading of relaxation times. The results have been further discussed quantitatively in the light of different valance states of vanadium ions with the aid of the data on spectroscopic properties.  相似文献   

10.
The processes of charge transport and trapping in amorphous Si1 ? xCx:H films deposited on crystalline p-type Si wafers and annealed in vacuum in the temperature range 300–650 °C have been evaluated. Current–voltage (IV), capacitance–voltage (CV) and admittance–temperature (G–T) characteristics were measured in the temperature range 100–350 K. The spectrum of thermal effusion of hydrogen was measured from room temperature up to 1000 °C.C–V characteristics indicate a slight increase of the dielectric constant k and a large hysteresis after annealing at 450 °C. The hysteresis is believed to be associated with mobile hydrogen effusion from the a-SiC:H film, and it is not seen after a 650 °C anneal. From IV data the maximum rectification ratio is observed after annealing at 450 °C. Variable-range hopping (VRH) conduction at the Fermi level is found to dominate the forward current of the as-deposited structure. After annealing at 450 °C the forward current can be described by space-charge limited (SCL) mechanisms with trapping at shallow levels with energy of about 0.12 eV. After annealing at 650 °C the process of VRH conduction appears again, but the density of hopping sites is much higher than in the as-grown sample. From admittance spectra, the energy position of respective traps in a-SiC:H is at (EV + 0.45) eV for as-deposited material and it decreases slightly after vacuum annealing. On the basis of these results, an energy band diagram of the a-Si1 ? xCx:H/p-Si structure annealed at 450 °C is proposed.  相似文献   

11.
《Journal of Non》2005,351(43-45):3547-3550
Temperature dependences of the dc conductivity and thermopower of a (GaSb)38Ge24 homogeneous bulk amorphous alloy are investigated at 110–425 K and at 180–400 K, respectively. The samples were prepared by spontaneous solid-state amorphization of a quenched crystalline high-pressure phase heated from 77 to 430 K at ambient pressure. In contrast to the parent amorphous GaSb compound exhibiting an unusual combination of electrical properties, amorphous (GaSb)38Ge24 is found to be a typical p-type semiconductor well described by the conventional Mott–Davis model.  相似文献   

12.
M. Okutan  O. Köysal  S.E. San  E. Şentürk 《Journal of Non》2009,355(52-54):2674-2677
In this paper, the electrical properties of side-chain liquid crystalline polymer (SLCP) are investigated by impedance spectroscopy technique. We report the measurement of dielectric and conductivity for SLCP from 1 kHz to 10 MHz within the temperature range from 300 to 370 K. The DC conductivity obeys Arrhenius law and it gives a small deviation at 315 K. The activation energies are equal to 0.20 eV and 0.75 eV for high and low temperatures, respectively. The frequency dependence of conductivity satisfies the power law, σAC = Aws, with s = 0.50–0.57. The evaluated power law exponent s exhibits nearly linear decreasing behavior with temperature. This suggests that the Correlated Barrier Hopping (CBH) model is the operating mechanism.  相似文献   

13.
《Journal of Non》2007,353(47-51):4384-4389
Lithium manganese spinels Li1+xMn2−xO4, 0  x  0.33, were prepared by wet chemistry technique followed by heat-treatment at 750 °C or 800 °C. Differential scanning calorimetry was used to reveal phase transitions. Electrical properties were studied by impedance spectroscopy. LiMn2O4 exhibited phase transition below room temperature. The transition, seen as an exothermic event in DSC and a steep decrease of conductivity upon cooling, was sharp in sample sintered at 800 °C and broadened over a range of temperature in sample sintered at 750 °C. In the low temperature phase of LiMn2O4, two relaxations of similar strength were observed in the frequency dependent permittivity. The low frequency process was identified as relaxation of charge carriers since the relaxation frequency followed the same temperature dependence as the dc conductivity. The high frequency process exhibited milder temperature dependence and was attributed to dipolar relaxation in the charge-ordered structure. The dipolar relaxation was barely visible in Li substituted samples, x  0.05, which did not undergo structural phases transition. Measurements extended to liquid nitrogen temperature showed gradual lowering of the activation energy of conductivity and relaxation frequencies, behavior typical for phonon-assisted hopping of small polarons.  相似文献   

14.
Y.A. El-Gendy  G.B. Sakr 《Journal of Non》2011,357(16-17):3226-3229
Ga5Ge15Te80 thin films have been deposited by e-beam evaporation method. The chemical composition of the deposited films was identified using energy dispersive X-ray spectrometry. The electrical conductivity, σ of the deposited films during heating/cooling cycles was investigated in the temperatures 298–570 K. The conductivity curve showed two sudden upward trends during the first heating cycle. The first upward trend occurs in the temperature range 408–430 K and was attributed to the amorphous-to-crystalline phase transformation. While the second is in the temperature range 470–495 K, and can be attributed to the crystallization process. However, for second heating cycle the conductivity curve becomes reversible. The optical band gap of the as-deposited and annealed film at annealing temperature 423 K was determined from the recorded transmittance and reflectance spectra. The obtained results were confirmed throughout the X-ray and transmission electron microscope studies.  相似文献   

15.
A novel combination of dispersed phase polymer nanocomposite electrolyte (PNCE) series based on an amorphous polymer host (PMMA)4–LiClO4 complex dispersed with nanocrystalline CeO2 is reported. XRD analysis has confirmed the dispersed phase nanocomposite formation. Effect of nano CeO2 dispersion on ion–ion and ion–polymer interactions has been analyzed. A drastic enhancement in electrical conductivity, by 2 orders of magnitude at 30 °C and 5 orders of magnitude at 100 °C, has occurred on nano CeO2 dispersion when compared with room temperature conductivity of undispersed PS film. An excellent correlation between variation of d.c. conductivity and free mobile charge carriers has been observed. An ion conduction model is proposed. Strength of the model lies in the experimental evidences from FTIR, conductivity and TEM analyses. Thermal analysis indicates a strong dependence of thermodynamical parameters, e.g., glass transition temperature (Tg), crystalline melting temperature (Tm), enthalpy etc. on filler addition. Substantial improvement in voltage stability (~ 4.4 V), thermal stability and ion transport properties has been noticed on nano CeO2 dispersion.  相似文献   

16.
《Journal of Non》2007,353(30-31):2934-2937
The structural, optical dispersion and electrical conductivity properties of the CuSe thin film have been investigated using X-ray diffraction, electrical and optical characterization methods. X-ray diffraction results indicate that CuSe thin film has an amorphous structure. The electrical conductivity of the CuSe film increases with increasing temperature. The activation energy and room temperature conductivity values of the film were found to be 1.32 meV and 3.89 × 10−3 S/cm, respectively. The refractive index dispersion of the thin film obeys the single oscillator model and single oscillator parameters were determined. The Eo, n, and So values of the CuSe thin film were found to be 5.08 eV, 3.55 and 1.92 × 1014 m−2, respectively. The obtained results suggest that CuSe film is an amorphous semiconductor.  相似文献   

17.
《Journal of Non》2007,353(11-12):1065-1069
In the present work the dependence of electrical properties of a-SiC:H thin films on annealing temperature, Ta, has been extensively studied. From the measurements of dark dc electrical conductivity, σD, in the high temperature range (from 283 up to 493 K), was found that the conductivity activation energy, Ea, is invariant for Ta  673 K and equal to 0.64 eV, whereas for Ta from 673 up to 873 K, Ea increases at about 0.2 eV reaching to a maximum value 0.85 eV at Ta = 873 K, suggesting the optimum material quality. This behavior of Ea as a function of Ta is mainly attributed to relaxation of the strain in the amorphous network, which is possibly combined with weak hydrogen emission for temperatures up to 873 K. For further increase of Ta (>873 K) the phenomenon of hydrogen emission, causes rapid decrease of Ea down to 0.24 eV at Ta = 998 K, deteriorating the material quality. These results are also supported by the measurements of dark dc electrical conductivity in the low temperature range (from 133 up to 283 K), where the dependence of the density of gap states at the Fermi level, N(EF), on annealing temperature presents the minimum value at Ta = 873 K. The Meyer–Nelder rule was found to hold for the a-SiC:H thin films for annealing temperatures up to 873 K. Finally, the dependence of dark dc electrical conductivity at room temperature, σDRT, on Ta showed to reflect directly the dependence of Ea on Ta.  相似文献   

18.
《Journal of Non》2007,353(11-12):1120-1125
We present a study of the electrical properties of silver chalcogenide glasses ‘40AgI’–30Ag2S–30GeS2, 45AgI–27.5Ag2S–27.5GeS2 and 50AgI–25Ag2S–25GeS2 in the 77–400 K temperature and the 20 Hz to 1 MHz frequency ranges. In our temperature range, a large variation of the real permittivity is observed, in relation with an electrodes polarization effect. As the amount of silver iodide increases in the Ag2S–GeS2 matrix, the glass transition temperature and the activation energies decrease, the electrical conductivity increases and reaches 4 Ω−1 m−1 at room temperature for the glass with 50% AgI. The study of the conductivity shows a behavior due to a high ionic conductivity, thermally activated with Edc = 0.21 eV, E1 = 0.075 eV (40AgI–30Ag2S–30GeS2, 45AgI–27.5Ag2S–27.5GeS2), Edc = 0.17 eV, E1 = 0.055 eV for 50AgI–25Ag2S–25GeS2. For these glasses, we have seen three conductivity regimes. The first two terms are thermally activated. The third term cannot be actually clearly identified because either it is thermally activated with a very low activation energy and frequency dependent, or it is almost non-thermally activated and frequency dependent.  相似文献   

19.
Ryszard J. Barczyński 《Journal of Non》2008,354(35-39):4275-4277
The conductivity of glasses in the 50WO3–(50 ? x)P2O5xA2O (A = Na, K, Cs) system has been investigated as a function of composition. It is shown that in tungstenite–phosphate glasses containing different alkali metal ions the conductivity decreases with an increase in the alkali metal ion content. A decrease in conductivity is larger for heavier ions and reaches more than seven orders of magnitude in the case of glass containing Cs2O. This behavior remains in contrast to the literature data on conductivity in transition metal oxide glasses containing alkali metal ions where usually strong conductivity anomalies of several orders of magnitude at certain amount of ions are observed. No necessity of ion–polaron interaction has been pointed out.  相似文献   

20.
《Journal of Non》2006,352(26-27):2737-2745
Electrical properties of A2.6+xTi1.4−xCd(PO4)3.4−x (A = Li, K; x = 0.0–1.0) phosphate glasses are investigated over a frequency range from 42 Hz to 1 MHz at different temperatures. Impedance spectroscopy is used to separate the bulk conductivity from electrode effect of electrical conductivity data. The bulk dc conductivity is Arrhenius activated, with activation energies and pre-exponential factors following the Meyer–Neldel rule. The real part of ac conductivity shows universal power law feature. The variation of dielectric constant with frequency is attributed to ion diffusion and polarization occurring in the phosphate glasses. The frequency dependent imaginary part of electric modulus M″(ω) plot shows non-Debye feature in conductivity relaxation. The Kohlrausch–Williams–Watts stretched exponential function was used to describe the modulus spectra and the stretching exponent β is found to be temperature independent. Scaling in M″(ω) shows that the electrical relaxation mechanisms are independent of temperature for given composition at different temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号