首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synchrotron radiation based photoemission spectroscopy (SRPES) and low energy electron diffraction (LEED) are used to study the interaction between Ag atoms and the Si(1 1 1)1 × 1–H surface. At an Ag coverage of 0.063 monolayers (ML) on the Si(1 1 1)1 × 1–H surface, the Si 2p component corresponding to Si–H bonds decreases, and an additional Si 2p component appears which shifts to a lower binding energy by 109 meV with respect to the Si bulk peak. The new Si 2p component is also observed for 0.25 ML Ag on the Si(1 1 1)7 × 7 surface. These findings suggest that Ag atoms replace the H atoms of the Si(1 1 1)1 × 1–H surface and form direct Ag–Si bonds. Contrary to the widely accepted view that there is no chemical interaction between Ag particles and the H-passivated Si surface, these results are in good agreement with recent first-principles calculations.  相似文献   

2.
Structural, energetic and electronic properties of water molecules adsorbed on β-Si3N4 (0 0 0 1) surface, at various coverages, are investigated using density functional theory. At low coverages (θ ? 0.5), it is found that all H2O molecules undergo spontaneous dissociation forming hydroxyl (OH) and imino (NH) groups where the reactive sites are identified, a result shown for the first time using ab initio theory. For higher coverages (θ > 0.5), only partial dissociation takes place where some of the molecules stay intact being bound via H-bond in good agreement with experimental findings. The driving force for the water dissociation has been identified to be dangling bonds on lower coordinated N and Si surface atoms showing that not all surface atoms are reactive corroborating with previous experimental findings.  相似文献   

3.
The atomic-scale structural changes in an α-Fe2O3 (hematite) (0 0 0 1) surface induced by sulfidation and subsequent oxidation processes were studied by X-ray photoemission spectroscopy, LEED, and X-ray standing wave (XSW) measurements. Annealing the α-Fe2O3(0 0 0 1) with a H2S partial pressure of 1 × 10−7 Torr produced iron sulfides on the surface as the sulfur atoms reacted with the substrate Fe ions. The oxidation state of the substrate Fe changed from 3+ to 2+ as a result of the sulfidation. The XSW measured distance of the sulfur atomic-layer from the unrelaxed substrate oxygen layer was 3.16 Å. The sulfide phase consisted of three surface domains identified by LEED. Formation of the two-dimensional FeS2 phase with structural parameters consistent with an outermost layer of (1 1 1) pyrite has been proposed. Atomic oxygen exposure oxidized the surface sulfide to a sulfate () and regenerated the α-Fe2O3(0 0 0 1) substrate, which was indicated by a (1 × 1) LEED pattern and the re-oxidization of Fe to 3+.  相似文献   

4.
Low-energy electron diffraction (LEED) have been used to determine the Cu(0 0 1)–c(4 × 4)-Sn structure formed at 300 K. It is demonstrated that a structural model suggested by scanning tunneling microscopy observations is correct: The model consists of one substitutional Sn atom and four Sn adatoms in the unit cell. Optimum parameters of the determined c(4 × 4) structure reveal that Sn adatoms laterally are displaced by 0.30 Å away from ideal fourfold-hollow sites along the 〈100〉 directions. It is proposed that such displacements of the Sn adatoms cause the formation of a network of octagonal rings on Cu(0 0 1). The substitutional Sn atom is located at each center of the octagonal rings. The formation conditions of the network are discussed.  相似文献   

5.
6.
7.
We report on an interface-stabilized strained c(4 × 2) phase formed by cobalt oxide on Pd(1 0 0). The structural details and electronic properties of this oxide monolayer are elucidated by combination of scanning tunneling microscopy data, high resolution electron energy loss spectroscopy measurements and density functional theory. The c(4 × 2) periodicity is shown to arise from a rhombic array of Co vacancies, which form in a pseudomorphic CoO(1 0 0) monolayer to partially compensate for the compressive strain associated with the large lattice mismatch (~9.5%) between cobalt monoxide and the substrate. Deviation from the perfect 1:1 stoichiometry thus appears to offer a common and stable mechanism for strain release in Pd(1 0 0) supported monolayers of transition metal rocksalt monoxides of the first transition series, as very similar metal-deficient c(4 × 2) structures have been previously found for nickel and manganese oxides on the same substrate.  相似文献   

8.
The adsorption of methanol, formaldehyde, methoxy, carbon monoxide and water on a (2 × 1) PdZn surface alloy on Pd(1 1 1) has been studied using DFT calculations. The most stable adsorption structures of all species have been investigated with respect to the structure and the electronic properties. It was found that methanol is only weakly bound to the surface. The adsorption energy only increases with higher methanol coverage, where chain structures with hydrogen bonds between the methanol molecules are formed. The highest adsorption energy was found for the formate species followed by the methoxy species. The formaldehyde species shows quite some electronic interaction with the surface, however the stable η2 formaldehyde has only an adsorption energy of about 0.49 eV. The calculated IR spectra of the different species fit quite well to the experimental values available in the literature.  相似文献   

9.
10.
11.
Structures of monolayer nickel nitride (NiN) on Cu(0 0 1) surface are studied by X-ray photoelectron spectroscopy (XPS), low energy electron diffraction (LEED) and scanning tunneling microscopy (STM). Formations of Ni–N chemical bonds and NiN monolayer at the surface are confirmed by XPS on the N-adsorbed Cu(0 0 1) surfaces after Ni deposition and subsequent annealing to 670 K. A c(2 × 2) structure is always observed in the LEED patterns, which is a quite contrast to the (2 × 2)p4g structure observed usually at the N-adsorbed Ni(0 0 1) surface. Atomic images by STM indicate the mixture of Ni–N and Cu–N structures at the surface. Density of the trenches on the N-saturated surface decreases and the grid pattern on partially N-covered surfaces becomes disordered with increasing the Ni coverage. These results are attributed to the decrease of the surface compressive stress at the N-adsorbed Cu surface by mixing Ni atoms.  相似文献   

12.
Topmost-surface-sensitive Si-2p photoelectron spectra of a clean Si(1 0 0)-2 × 1 surface have been measured using Si-2p photoelectron Si-L23VV Auger coincidence spectroscopy (Si-2p–Si-L23VV PEACS). The escape depth of the PEACS electrons is estimated to be ~1.2 Å. The results support the assignments of the Si up-atoms, the Si down-atoms, the Si 2nd-layer, and the Si bulk proposed in previous researches. The Si-2p component with a binding energy of ?0.23 eV relative to the bulk Si-2p3/2 peak, is shown to originate mainly from the topmost surface. Site selectivity of PEACS is indicated to be achieved to some degree by carefully selecting the kinetic energy of the Auger electrons. Since PEACS can be applied to any surface, the present study opens a new approach to identify PES components.  相似文献   

13.
14.
《Current Applied Physics》2010,10(4):1221-1226
Good quality ammonium dihydrogen phosphate single crystals have been grown by: (i) Sankaranarayanan–Ramasamy (SR) method and (ii) SR method with slotted ampoule. The grown crystals were subjected to UV–Vis spectroscopy, high-resolution X-ray diffractometer, dielectric, piezoelectric and laser damage threshold studies. Compared to the (1 0 0) plane of the conventional method grown ADP crystal and 〈1 0 0〉 directed SR method grown ADP crystal, the crystal grown by SR method with slotted ampoule has higher growth rate, higher optical transparency, high crystalline perfection, low dielectric loss, high piezoelectric charge coefficient and high laser damage threshold due to diffusion of segregated impurities away from the growing crystal in the slotted ampoule growth.  相似文献   

15.
A combination of infrared spectroscopy, X-ray photoelectron spectroscopy and density functional theory has been used to investigate the adsorption behavior of glycine at the Ge(100) ? 2 × 1 surface under ultrahigh vacuum conditions. Comparison of experimental and simulated IR spectra indicates that at 310 K, glycine adsorbs on Ge(100) ? 2 × 1 via O–H dissociation, with some fraction of the products also forming an N dative bond to a neighboring germanium atom. O–Ge dative bonding is not observed. As coverage increases, the surface concentration of the monodentate O–H dissociated adduct increases, while that of the N dative-bonded species appears constant. XPS data support and clarify the IR findings and reveal new insights, including the presence at higher coverage of a minor product that has undergone dual O–H and N–H dissociation. These findings are supported by the calculated energy diagrams, which indicate that the reaction of a glycine molecule on the Ge(100) ? 2 × 1 surface via O–H dissociation and interdimer N dative bonding is both kinetically and thermodynamically favorable and that N–H dissociation of this adduct is feasible at room temperature given incomplete thermal accommodation along the reaction pathway.  相似文献   

16.
《Surface science》2003,470(1-2):9-18
First principles total energy studies are performed to investigate the energetics, and the atomic structure of the adsorption of germane (GeH4), and digermane (Ge2H6) on the Si(0 0 1)-c(2 × 4) surface. It has been observed experimentally that adsorption of Ge2H6 is a dissociative process, which first yields GeH3 and then GeH2 fragments as products. We first study the adsorption of GeH2 considering two different models; the intra-row and the on-dimer geometries. Our results show that the on-dimer site is more stable than the intra-row geometry by 0.44 eV. This is not a surprise since in the absence of H atoms, adsorption in the on-dimer site leaves no dangling bonds. In contrast, when the GeH2 fragment is considered together with two H atoms, the intra-row geometry is favored energetically as compared with the on-dimer site, in good agreement with experiment. Similar results have been previously obtained for the adsorption of SiH2 on Si(0 0 1). Digermane adsorption is explored according to two different geometries. In the first one, we have considered the adsorption as two GeH3 fragments, while in the second, we have considered the adsorption as two GeH2 fragments plus 2 H fragments. In good agreement with experiments, it is found that the latter geometry is energetically more favorable.  相似文献   

17.
The atomic structure and the saturation coverage of Cs on the Si(0 0 1)(2×1) surface at room temperature have been studied by coaxial impact collision ion scattering spectroscopy (CAICISS). For the atomic structure of saturated Cs/Si(0 0 1)(2×1) surface, it is found that Cs atoms occupy a single adsorption site at T3 on the Si(0 0 1) surface. The height of Cs atoms adsorbed at T3 site is 3.18±0.05 Å from the second layer of Si(0 0 1)(2×1) surface. The saturation coverage estimated from the measured CAICISS intensity ratio and the proposed atomic structure is found to be 0.46±0.06 ML.  相似文献   

18.
In this work, we performed density functional calculations to examine the molecular adsorption states of thiophene on β-SiC(0 0 1)-2×1 surface. A number of possible adsorption geometries are considered into two groups as the polymeric thiophene chain and the individual molecules covalently bonded onto the surface. The results show that the polymeric chain on the surface is the less stable adsorption case and individual arch like adsorption case structure is more stable than others. In all adsorption cases, the adsorbed SiC surfaces are characterized as different semiconductors.  相似文献   

19.
The adsorption of coronene (C24H12) on the Si(1 1 1)-(7 × 7) surface is studied using scanning tunneling microscopy (STM). Upon room temperature submonolayer deposition, we find that the coronene molecules preferentially adsorb on the unfaulted half of the 7 × 7 unit cell. Molecules adsorbed on different sites can be induced to move to the preferential sites by the action of the tip in repeated image scans. Imaging of the molecules is strongly bias dependent, and also critically depends on the adsorption site. We analyze the results in terms of differential bonding strength for the different adsorption sites and we identify those substrate atoms which participate in the bonding with the molecule.  相似文献   

20.
Motivated by the need to form 1D-nanostructured dopants on silicon surfaces, we have attempted to grow Ga on the high index Si(5 5 12) surface which has a highly trenched (1D) morphology. The evolution of the interface with Ga adsorption in the monolayer regime has been probed by in situ AES, LEED and EELS. Controlling the kinetics by changing the Ga flux rates shows an interesting difference in the 1.0 to 1.5 ML region. The low flux rate (0.03 ML/minute) results in a Frank van der Merwe (layer by layer) growth mode up to 2 ML, while the higher flux rate (0.1 ML/minute) shows a transient island formation after the completion of 1 ML. The low rate shows the formation of 2 × (3 3 7) and (2 2 5) superstructures, while only the 2 × (3 3 7) is observed in a wide coverage range for the higher rate. The results demonstrate the ability to kinetically control the surface phases with different electronic properties of this technologically important interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号