首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
《Journal of Non》2005,351(43-45):3542-3546
YVO4:RE (RE = Dy3+, Sm3+, Er3+) were prepared via an in situ chemical co-precipitation technology, and the assembly process of hybrid precursors was as follows: using rare earth coordination polymers with salicylic acid as precursors and composing with the polyvinyl alcohol (PVA) as dispersing media. Their microstructure and micromorphology have been analyzed by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM), which indicate that there exist some novel cobblestone-like microcrystalline particles. All the doped rare earth ions showed their characteristic emissions in YVO4 hosts. The concentration quenching all appeared of the three dopant ions and the optimum concentrations for Dy3+, Er3+, Sm3+ were determined to be 2, 3, 1 mol% in yttrium vanadate particles, respectively.  相似文献   

2.
X.L. Duan  Y.C. Wu  F.P. Yu  D.R. Yuan 《Journal of Non》2008,354(40-41):4695-4697
Transparent rare-earth Eu3+-doped ZnO–Ga2O3–SiO2 nano-glass-ceramics were obtained by a sol–gel method. X-ray diffraction and transmission electron microscopy were used to characterize the as-synthesized materials. Results showed that ZnGa2O4 nanocrystals with the size of 5 nm were precipitated from ZnO–Ga2O3–SiO2 system and dispersed in the SiO2-based glass when the heat-treatment temperature was up to 800 °C. Photoluminescence characterization of Eu3+-doped ZnO–Ga2O3–SiO2 nano-glass-ceramics was carried out and the results show that the as-synthesized material display intense emission at 615 nm belonging to 5D0  7F2 transition.  相似文献   

3.
Transparent glass-ceramics containing SrF2 nanocrystals were fabricated by melt-quenching and subsequent heating of glass with a composition of 50SiO2–10Al2O3–20ZnF2–20SrF2. X-ray diffractometry, transmission electron microscopy, and energy dispersive spectroscopy were used to investigated the microstructure of the SrF2 glass-ceramics. Results show that SrF2 nanocrystals were homogeneously precipitated among the aluminosilicate glass matrix, and the mean size of the SrF2 nanocrystals was about 20 nm, and Eu3+ ions partition mainly into the precipitated SrF2 nanocrystals after crystallization. The glass-ceramics exhibited intense red emission corresponding to the 5D0  7FJ (J = 0–4) transitions of Eu3+ ions under 393 nm excitation. A significant Eu3+ luminescence enhancement by a factor of about nine times was observed after crystallization. Besides, the obvious stark splitting emissions, the low forced electric dipole 5D0  7 F2 transition, and the long decay lifetimes of Eu3+ ions also revealed the partition of Eu3+ ions into low phonon energy SrF2 nanocrystals. Our results indicate the SrF2 based fluorosilicate glass-ceramics is an excellent host for trivalent lanthanide ion doping and may find applications in photonics.  相似文献   

4.
《Journal of Crystal Growth》2007,298(2):192-196
High-yield Eu2O3 short nanorods have been prepared by a facile sol-gel method with polystyrene/polyelectrolyte (PS/PE) microreactor as template in an aqueous solution of europium nitrate in the presence of ammonia and urea. The properties of Eu2O3 nanorods were characterized by powder X-ray diffraction, thermogravimetric analysis, transmission electron microscopy (TEM), high-resolution transmission electron microscopy, field emission scanning electron microscopy (FESEM), and photoluminescence spectroscopy. The particle sizes measured from TEM and FESEM are about 200 nm×500 nm (W×L). A possible mechanism for the formation of such high-yield oxide nanorods is discussed.  相似文献   

5.
Silica submicron spherical particles coated with an yttrium aluminum garnet (Y3Al5O12, YAG) layer doped with Eu3+ were prepared by the sol–gel method. The structure and morphology of samples determined by the X-ray powder diffraction measurements and transmission electron microscope images, respectively, indicated that well-crystallized garnet nanocrystallites were formed with successive coating cycles. Similar trends were deduced from the evolution of the luminescence spectra. The ratio of integrated intensities of the 5D0  7F2 and 5D0  7F1 transitions was used to analyze the structural variations in the surroundings of the Eu3+ ion. The effect of coating was analyzed by comparing the luminescence properties of the Y3Al5O12:Eu3+ nanocrystalline powders and composite Y3Al5O12:Eu3+/SiO2 materials.  相似文献   

6.
Eu/Tb codoped aluminoborosilicate glasses were fabricated by high temperature melting-quenched technique and their luminescence properties were investigated by excitation and emission spectra. Under 376 nm excitation, blue, green and red emission bands were simultaneously observed at 425 nm, 485 nm, 540 nm and 611 nm, respectively. The broad blue emission band centered at 425 nm was originated from the reduced Eu2+ ions, which were reduced from Eu3+ ions at high temperature in an ambient atmosphere and the reduction process may be related with the optical basicity of glass matrix. A complex bright white light emission was obtained for 0.5 mol% Eu2O3, 0.5 mol% Tb2O3 codoped aluminoborosilicate glass with CIE-X = 0.31 and CIE-Y = 0.33. The energy transfer among Eu3+, Eu2+ and Tb3+ ions was also discussed.  相似文献   

7.
Reduction of Eu3+  Eu2+ and luminescence of europium (Eu) ions in glass ceramics containing SrF2 nanocrystals have been investigated. The formation of SrF2 nanocrystals in glass ceramics was confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Blue luminescence of the Eu2+ ions was observed in the Eu doped glass ceramics which were prepared by the heat treatment of the glass in air atmosphere. The double-exponential decay curves of 5D0 state of Eu3+ in the Eu doped glass ceramics indicated that there were two different surroundings of the Eu ions in the glass ceramics.  相似文献   

8.
Strong blue-green light emitting Eu doped SrAl2O4 phosphor was synthesized by a low-temperature initiated, self-propagating and gas producing combustion process in a very short time (<5 min). The prepared powder was characterized by X-ray diffraction, Fourier-transform infrared spectrometry and scanning electron microscopy. The excitation spectrum shows a peak at 397 nm. Upon excitation at 397 nm, the emission spectrum exhibits a well defined broad band with maximum at 493 nm corresponding to 4f65d  4f7 transition. Electron paramagnetic resonance (EPR) measurements at X-band showed low field signals due to Eu2+ ions in SrAl2O4:Eu.  相似文献   

9.
《Journal of Non》2005,351(46-48):3634-3639
Using rare earth coordination polymers with aromatic carboxylic acids as the precursors of rare earth oxide components, with polyethylene glycol (PEG) as the dispersing media, micro-crystalline phosphors RENbO4:Ln3+ (RE = Y, Gd, Lu; Ln = Eu, Tb) have been synthesized by an in situ co-precipitation method. Both X-ray diffraction and scanning electron microscopy have shown that the resultant samples present are crystalline with ‘rice glue ball’ micro-morphology and crystalline grain sizes in the range of 1–2 μm. The luminescent properties of these phosphors have been studied, which show that the best photoluminescent performance is achieved for GdNbO4:Tb3+ or Eu3+. This was because Gd3+ plays an important role to enhance the luminescence of Tb3+ or Eu3+ in an energy transfer process. In addition, the influence of the doping concentration on the fluorescence behaviors has been examined. With increase of the doping concentration from 1 mol% to 5 mol%, both the red emission intensity of Eu3+ and the green emission intensity of Tb3+ increase.  相似文献   

10.
S. Rada  A. Dehelean  E. Culea 《Journal of Non》2011,357(16-17):3070-3073
Glasses in the xEu2O3·(100-x)[4TeO2·PbO2] system where 0  x  50 mol% have been prepared using the melt quenching method. The influence of europium ions on the structure of lead–tellurate glasses has been investigated using density measurements, FTIR and UV–VIS spectroscopy. Structural changes produced by increasing the rare earth concentration were followed.The europium and lead ions show a preference towards [TeO3] structural units causing a deformation of the TeOTe linkages. Structural changes inferred by analyzing the band shapes of IR spectra revealed that the increase of the Eu+ 3 content causes the intercalation of [EuOn] entities in the [TeO4] chain network. The excess of oxygen can be supported into the glass network by the formation of [PbOn] and [EuOn] structural units.The UV–VIS spectroscopy data show that europium ions enter the glass matrix in the Eu2+ and Eu3+ valence states, the last being predominant in the studied glasses. The Pb+ 2 ions produce strong absorption in the ultraviolet domain.  相似文献   

11.
《Journal of Non》2007,353(11-12):1037-1040
Amorphous Eu2O3 was prepared by an aqueous sol–gel method. Emission due to the 5D0  7FJ (J = 0, 1, 2) transitions of Eu3+ ions were observed. The dominant transition was the 5D0  7F2 red emission of Eu3+. The properties of the as-prepared samples were different with changes in the annealing temperature. To investigate the luminescence properties of the amorphous Eu2O3, the temperature-dependent photoluminescence (PL) spectra of samples annealed at 600 °C were measured in the temperature range 77–300 K. PL peak positions were unchanged with the change of temperature.  相似文献   

12.
《Journal of Non》2006,352(28-29):3047-3051
A modified wet-chemical synthesis technology was put forward to fabricate Eu3+/Dy3+ doped with YNbxP1−xO4 and YNbxV1−xO4 phosphors with varying x from the assembly of multicomponent hybrid precursors. The morphologies have been found to be 1–2 μm crystalline spheres using XRD and SEM. The red photoluminescence intensity reaches the strongest in YNb0.8P0.2O4:Eu3+ and YNb0.1V0.9O4:Eu3+ phosphors and the red to orange intensity ratio (RO) values decrease with the content of P(V) increasing. Besides this, the optimum concentration for Dy3+ luminescence in YNb0.5P0.5O4 is 1 mol%, while that in YNb0.5V0.5O4 is 0.5 mol% or lower than 0.5 mol%. The yellow to blue intensity ratio (YB) value of Dy3+ increases when the Dy3+ concentration increases from 0.5 to 8 mol% in YNb0.5P0.5O4; however, that of Dy3+ does not vary much in YNb0.5V0.5O4 matrix.  相似文献   

13.
《Journal of Non》2007,353(52-54):4697-4701
The luminescent material europium-activated La2O3 have been prepared by the citric acid and poly (ethylene glycol) (PEG) precursor route. Their structures and optical properties were characterized by FT-IR spectrum, X-ray diffraction (XRD), thermogravimetry-differential thermal analysis (TG-DTA), UV–vis spectroscopy, and photoluminescence (PL) spectra, respectively. The results show considerable enhancement of the photoluminescence, especially the Eu3+ f–f transition excitation lines and the charge transfer band (CT). The samples can exhibit strong red emission centered at 626 nm excited at either the CT band (300 nm) or the Eu3+ f–f transition (396 nm), suggesting the potential application as the red phosphors for ultraviolet light-emitting diodes (LEDs), which can be attributed to the 5D07F2 transition of Eu3+. The remarkable enhancement of color purity of red emission and the concentration quenching of Eu3+ in La2O3 were also observed with increasing Eu3+ doped concentration.  相似文献   

14.
The sodium borosilicate glass doped with Cu7.2S4 quantum dots was prepared by using both sol–gel and atmosphere control methods. The formation mechanism and the microstructure of the glass were examined using differential thermal analysis and thermal gravimeter (TG-DTA), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), energy dispersive X-ray spectra (EDX), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED). The results revealed that Cu7.2S4 quantum dots in orthorhombic crystal system had formed in the glass, and the size ranged from 9 nm to 21 nm. In addition, Z-scan technique was used to measure the third-order optical nonlinearities of the glass. The results indicated that the third-order optical nonlinear refractive index γ, the absorption coefficient β, and the susceptibility χ(3) of the glass were 1.11 × 10? 15 m2/W, 8.91 × 10? 9 m/W, and 6.91 × 10? 10 esu, respectively.  相似文献   

15.
The Eu3 +/Tb3 +/Tm3 + triply-doped glasses with the composition of CaO―Al2O3―B2O3―RE2O3 (RE = Eu,Tb,Tm) have been synthesized by melt quenching method. The photoluminescence of these Eu3 +/Tb3 +/Tm3 + triply-doped glasses (CaAlB:RE3 +) were studied and the emission spectra combining with blue, green and reddish orange bands were observed. Under 360 nm wavelength excitation the white light emission is achieved when the concentration (x) of Tm3 + in Ca0.931 ?xAlB:Eu3 +0.038,Tb3 +0.031,Tm3 +x glass is in the range of 0.0013-0.011 per mol matrix. In addition, the energy transfer (ET) between Tb3 + and Eu3 + ions in Eu3 +/Tb3 +/Tm3 + triply-doped glasses was validated and the electric dipole–dipole interaction is responsible for the ET process of Tb3 +  Eu3 + at low concentrations. Hence, the Eu3 +/Tb3 +/Tm3 + triply-doped aluminoborate glass could be a potential candidate for white LEDs.  相似文献   

16.
《Journal of Non》2006,352(23-25):2404-2407
Transparent 0.1 at.%Cr,1.0 at.%Nd:YAG (Y3Al5O12) ceramics were fabricated by a solid-state reaction and vacuum sintering with CaO as a charge compensator and tetraethyl orthosilicate (TEOS) as a sintering aid using high-purity powders of Al2O3, Y2O3, Nd2O3 and Cr2O3. The mixed powder compacts were sintered at 1800 °C for 5 h and 30 h under vacuum. The optical transmittance of the Cr,Nd:YAG ceramics sintered at 1800 °C for 5 h and 30 h is ∼63% and ∼78% in the infrared wavelengths, respectively. The two samples exhibit pore-free structures and the average grain size is about 10 and 20 μm. For the sample sintered at 1800 °C for 5 h, the dominant fracture mechanism is the transgranular fracture. With increase of holding time up to 30 h, the ratio of intergranular fracture surfaces increase and more Cr3+ ions in the Cr,Nd:YAG ceramic transform to Cr4+. High-quality Cr4+,Nd3+:YAG transparent ceramics may be a potential self-Q-switched laser material.  相似文献   

17.
W.J. Zhang  Q.J. Chen  Q.Y. Zhang  Z.H. Jiang 《Journal of Non》2011,357(11-13):2278-2281
Transparent glass-ceramics containing MF2(MF3):Ho3+,Tm3+ (M = Ca, Ba, and La) nanocrystals have been prepared by melt quenching and subsequent thermal treatment. X-ray diffraction and transmission electron microscopy analysis confirmed the precipitation of MF2 (MF3) nanocrystals among the glass matrix. Energy-dispersive X-ray spectroscopy results evidenced the incorporation of Tm3+ and Ho3+ into the MF2 nanocrystals. Intense 2.0 μm emission originating from the Ho3+: 5I7  5I8 transition was achieved upon excitation with 808 nm laser diode. A large ratio of the forward Tm3+ → Ho3+ energy transfer constant to that of the backward process indicated high efficient energy transfer from Tm3+ (3F4) to Ho3+ (5I7), and benefited from the reduced ionic distances of Tm3+–Tm3+ and Tm3+–Ho3+ pairs and low phonon energy environment with the incorporation of rare earth ions into the precipitated MF2 nanocrystals. The results indicate that oxyfluoride glass-ceramic is a promising candidate for 2.0 μm laser.  相似文献   

18.
《Journal of Non》2006,352(23-25):2657-2661
Germanate glasses were prepared by the melt-quenching method using an assembled hot-thermocoupler equipped in a sample chamber of a fluorescence spectrometer, and subsequently their luminescence and excitation spectra were measured. In the GeO2 glass, luminescence bands due to the Ge2+ center appeared at the central wavelengths of 300 and 395 nm, their excitation bands being at 250 and 330 nm, respectively. In the (100  x)GeO2  xMmOn glasses, for MmOn = B2O3 (x  50), SiO2 (x  40), and Al2O3 (x  2), the luminescence intensity and therefore the amount of the Ge2+ center increased with increasing the content of MmOn, where M(2n/m)+ ions (B3+, Si4+, and Al3+) have lower basicities than a Ge4+ ion. Contrarily, for MmOn = Li2O (x  30), Na2O (x  20), K2O (x  20), CaO (x  20), SrO (x  3), BaO (x  15), ZnO (x  20), Ga2O3 (x  10), Sb2O3 (x  20), Bi2O3 (15  x  25), TiO2 (x  3), and Nb2O5 (x  10), the luminescence intensity and the amount of the Ge2+ center rapidly decreased with increasing the amount of additives and disappeared, where M(2n/m)+ ions (Li+, Na+, K+, Ca2+, Sr2+, Ba2+, Zn2+, Ga3+, Sb3+, Bi3+, Ti4+, and Nb5+) have higher basicities than a Ge4+ ion.  相似文献   

19.
《Journal of Non》2007,353(13-15):1397-1401
Fluorescence spectra and decay curves of the 5D0 level for different concentrations of Eu3+ (4f6) ions in K–Ba–Al fluorophosphate glasses have been measured at room temperature and are analyzed. The Judd–Ofelt intensity parameters Ω2 and Ω4 have been determined from the intensity ratios of emission peaks corresponding to 5D0  7FJ (J = 2 and 4) to 5D0  7F1 transitions for 1.0 mol% glass. The intensity parameters thus obtained are in turn used to calculate the radiative properties of the fluorescent levels of Eu3+ ions. Second and fourth rank crystal-field parameters have been evaluated by assuming a C2V site symmetry for the local environment of Eu3+ ions to estimate the crystal-field strength experienced by Eu3+ ions in the present host. The decay profiles of the 5D0  7F2 transition of Eu3+ ions in the present glasses are found to be single exponential for all the studied Eu3+ ion concentrations. A marginal increase in lifetime of the 5D0 level has been noticed with Eu3+ ion concentration up to 2.0 mol% and then the lifetime marginally decreases for higher Eu3+ ion concentrations.  相似文献   

20.
《Journal of Non》2007,353(52-54):4783-4791
Phosphate glasses have been prepared by melting batch materials in electric furnaces, induction furnaces, and in microwave ovens. In the present work mixtures of (NH4)2HPO4 and Fe3O4 or Fe2O3 were exposed to microwave energy, heated to 1200 °C, and cast to produce iron phosphate glasses. Glasses were also produced in electric furnaces for comparison. The material was analyzed by X-ray diffraction, Mössbauer spectroscopy, and differential thermal analysis. For magnetite-based glasses produced in an electric furnace, the Fe2+/(Fe2+ + Fe3+) ratio is compatible with the value in the batch material. The Fe2+/(Fe2+ + Fe3+) ratio is higher for glasses produced in a microwave oven. Glasses with nominal composition 55Fe3O4–45P2O5 (mol%) produced in an electric furnace present an arranged magnetic phase with hyperfine field that could be associated to hematite (estimated to be 21%). All the glasses submitted to heat treatments for crystallization present the following crystalline phases: FePO4, Fe3(PO4)2, Fe(PO3)3, Fe(PO3)2 and Fe7(PO4)6. The amount of these phases depends on the glass composition, and glass preparation procedure. Microwave heating allows to reach melting temperatures at high heating rates, making the procedure easy and economical, but care should be taken concerning the final Fe2+/(Fe2+ + Fe3+) ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号