首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Organic thin films composed of naphtho[2,3-a]pyrene, a very promising multifunctional polyaromatic hydrocarbon for use in optoelectronic devices, are demonstrated to restructure the pristine Au(111) 22 × √3 surface. The perturbation of the herringbone reconstruction was used to gauge the interaction strength of the organic molecule with the substrate through a series of controlled adsorption and annealing treatments. The overall behavior of the system is interpreted as an interplay between thermodynamic and kinetic factors, dictated by the temperature of the sample and the surface coverage of the molecules. The restructuring mechanism involves the exchange of Au atoms from the herringbone reconstruction to the step edges. Our results reveal that the molecular and substrate equilibrium structure is only achieved after annealing the system to > 470 K. This infers that caution should be taken when organic–metal interfaces are constructed by low or room temperature deposition, as they may not correspond to the equilibrium structures, and therefore, may misrepresent the adlayer structure which exists at the realistic working conditions of devices.  相似文献   

2.
The adsorption of a water molecule on a basal Bi(111) electrode surface, crystallising in the rhombohedral system, has been studied in the framework of cluster model. The quantum chemical calculations were performed at the Density Functional Theory (DFT) level and the electrical double layer effects were analysed by using an external electric field. In contrast to computational predictions reported previously for other metal surfaces, crystallising in the face-centred cubic or hexagonal close-packed systems, a hollow site for Bi(111) was found to be energetically the most preferable; the water adsorption energy amounts to ? 28 kJ mol? 1. In a wide range of surface charge densities the water molecule is bound preferentially through the O atom in orientation perpendicular to the surface plane. The Bi(111) hydrophilic properties are compared with those for other metals. Some adsorption characteristics of a hydrogen atom and a hydroxyl group at Bi(111) are reported as well, which give evidence in favour of the non-dissociative adsorption of water molecules.  相似文献   

3.
Brooke A. Timp  X.-Y. Zhu 《Surface science》2010,604(17-18):1335-1341
A number of solar energy conversion strategies depend on exciton dissociation across interfaces between semiconductor quantum dots (QDs) and other electron or hole conducting materials. A critical factor governing exciton dissociation and charge transfer in these systems is the alignment of electronic energy levels across the interface. We probe interfacial electronic energy alignment in a model system, sub-monolayer films of PbSe QDs adsorbed on single crystal ZnO(101?0) surfaces using ultraviolet photoemission spectroscopy. We establish electronic energy alignment as a function of quantum dot size and surface chemistry. We find that replacing insulating oleic-acid capping molecules on the QDs by the short hydrazine or ethanedithiol molecules results in pinning of the valence band maximum (VBM) of QDs to ZnO substrate states, independent of QD size. This is in contrast to similar measurements on TiO2(110) where the alignment of the PbSe QD VBM to that of the TiO2 substrate depends on QD size. We interpret these findings as indicative of strong electronic coupling of QDs with the ZnO surface but less with the TiO2 surface. Based on the measured energy alignment, we predict that electron injection from the 1se level in photo-excited PbSe QDs to ZnO can occur with small QDs (diameter ? = 3.4 nm), but energetically unfavorably for larger dots (? = 6.7 nm). In the latter, hot electrons above the 1se level are necessary for interfacial electron injection.  相似文献   

4.
Photoluminescence (PL) of photochromic pHEMA-TiO2 gels-based hybrids was studied by means of time- and energy-resolved spectroscopy at temperatures between 300 K and 10 K. The PL band at 485 nm is assigned to S0←T1 transition of methoxyphenol (organic molecule added to the commercial monomer hydroxyethyl methacrylate, HEMA and used as an inhibitor of spontaneous polymerisation) in the polymer environment, while the PL band at 600 nm is assigned to the self-trapped exciton onto octahedral TiO6 site of the inorganic component. The mechanisms of the excited states population are discussed. In particular it is shown that both singlet-triplet energy transfer in methoxyphenol and methoxyphenol–TiO2 charge transfer are strongly affected by the material composition and temperature. The hypothesis about the photoexcited holes annihilation with the trapped electrons is confirmed to be one of main mechanisms limiting the Ti3+ centres concentration.  相似文献   

5.
W. Moritz  J. Landskron  M. Deschauer 《Surface science》2009,603(10-12):1306-1314
The two main methods for surface structure determination, X-ray diffraction and low energy electron diffraction, are briefly compared and two areas are discussed where the application and further development of LEED seems promising. One field is the measurement of thermal vibration with LEED and the second is the analysis of substrate induced distortions in adsorbed organic molecules. As a test case for the analysis of thermal vibrations the results of a temperature dependent LEED I(V) analysis of Cu(1 1 0) is presented showing that LEED is sensitive enough to measure anisotropic vibration amplitudes. As example for organic molecules the results of a LEED I(V) analysis of thiouracil on Ag(1 1 1) are presented and compared to the results of a previous X-ray study. The differences in the structural details can be related to the different diffraction geometries of surface X-ray diffraction and LEED.  相似文献   

6.
The results on the electronic structure of the unoccupied electronic states of the polycrystalline SnO2 in the energy range from 5 eV to 25 eV above the Fermi level are presented. The modification of the electronic structure and of the surface potential upon deposition of the ultrathin films of copper phthalocyanine (CuPc) and of perylene tetracarboxylic acid dianhydride (PTCDA) film onto the SnO2 surface were studied using the very low energy electron diffraction (VLEED) method and the total current spectroscopy (TCS) measurement scheme. A substantial attenuation of the TCS signal coming from the SnO2 surface was observed upon formation of a 1.5–2 nm thick organic deposit layer while no new spectral features from the deposit were distinguishable. It was observed that the electronic structure typical for the organic films was formed within the organic deposit thickness range from 2 nm to 7 nm. The interfacial charge transfer was characterized by the formation of the polarization layer up to 5 nm thick in the organic films. The PTCDA deposition on SnO2 was accompanied by the negative charge transfer onto the organic layer and to the 0.65 eV increase the surface work function. At the CuPc/SnO2 interface, the negative charge was transferred to the SnO2 surface and the overall surface work function decreased by 0.15 eV.  相似文献   

7.
Fullerene (C60) molecules on an Si(111)-(7 × 7) surface have been investigated using non-contact scanning non-linear dielectric microscopy (NC-SNDM) under an ultra-high vacuum. The topography, the interface between the C60 molecule and Si adatoms, and the internal structure of the C60 molecules were successfully investigated. For ~ 0 ML and ~ 0.4 ML coverage, both phase reversal sites and sites without phase reversal could be observed in the first order phase (θ1) image. On the other hand, for 1 ML coverage, phase reversal could not be identified. These results indicate that charge transfer only occurred from Si adatoms to C60 molecules at three-fold symmetric sites on the Si(111)-(7 × 7) surface, and the electric dipole moment is reflected in the electronic state of the C60 molecules. The internal structure of C60 molecules was clearly observed in topography by the second order amplitude (A2) feedback signal for 1 ML coverage, reflecting the LDOS originating from the t1u orbital.  相似文献   

8.
We have studied the formation of a Bi-induced (2 × 2) reconstruction on the InAs(111)B surface. In connection to the development of the (2 × 2) reconstruction, a two dimensional charge accumulation layer located at the bottom of the InAs conduction band appears as seen through a photoemission structure at the Fermi level. Not well ordered Bi layers do not induce a charge accumulation. The Bi-induced reconstruction reduces the polarization of the pristine surface and changes the initial charge distribution. InAsBi alloying occurs below the surface where Bi acts as charge donor leading to the charge accumulation layer.  相似文献   

9.
Medium energy ion scattering spectroscopy (MEIS) could identify ∼1 nm interface layer with compressive strain, which depends sensitively on the interface treatment conditions such as oxynitridation, ozone oxidation, tilt of Si(0 0 1) substrates. The interface strain relaxation always shows improvements in gate oxide reliability. Atomic scale investigations of strain profiles with MEIS are reviewed for SiO2/Si(0 0 1) interfaces.  相似文献   

10.
The interaction between Au nano-particles and oxide supports is recently discussed in terms of the catalytic activities. This paper reports the electronic charge transfer between Au nano-particles and TiO2-terminated SrTiO3(0 0 1) substrate, which is compared with that for stoichiometric(S)-, pseudo-stoichiometric(S1)- and reduced(R)-TiO2(1 1 0) supports. We observed the photoelectron spectra of Au 4f, O 2s, Ti 3p, and Sr 4p lines and also measured the work functions for Au/oxides supports using synchrotron-radiation light. As the results, all the O 2s, Ti 3p, and Sr 4p lines for Au/SrTiO3(0 0 1) show lower binding energy shifts in a quite same manner and abrupt increase in the work function is seen in an initial stage. This clearly evidences an electronic charge transfer from the substrate to Au probably due to a much larger work function of Au than SrTiO3(0 0 1), which leads to an upward band bending (0.3 eV) just like a Schottky contact. Electronic charge transfers also take place at Au/S- and Au/S1-TiO2(1 1 0) and Au/R-TiO2(1 1 0) interfaces, where electrons are transferred from Au to S- and S1-TiO2 and from R-TiO2 to Au, as predicted by ab initio calculations.  相似文献   

11.
The chemisorption of the allylamine molecule, which contains two functional groups (ethenyl and hydroxyl), on a Si(001) ? (2 × 1) surface was studied using density functional theory (ab-initio DFT) based on the pseudopotential approach. In particular, we focused on the determination of the most stable position of the CC double bond in the ethenyl group and observation of the passivation effect of allylamine on the electronic structure of the clean Si(001) ? (2 × 1) phase. For this purpose, all of the possible interaction mechanisms occurring at the interface were considered: (i) dissociative bonding where the CC bond is parallel to the silicon surface, (ii) dissociative bonding where the CC bond is perpendicular to the silicon surface, and (iii) the [2 + 2] CC cycloaddition reaction. From our total energy calculations, it was found that the bifunctional allylamine molecule attached to the Si(001) ? (2 × 1) surface through the amino functional group, by breaking the N–H bond and forming a Si–H bond and Si–NHCH2CHCH2 surface fragments. During this process, the ethenyl functional group remains intact, and so can be potentially used as an extra reactive site for additional chemical interactions. In addition to these findings, the nudged elastic band method (NEB) calculations related with the reaction paths showed that the parallel position of the CC bond with respect to the surface of the substrate is more favorable. In order to see the influence of the chemisorbed allylamine molecule on the surface states of the clean Si(001)  (2 × 1), we also plotted the density of states (DOS), in which it is seen that the clean Si(001)  (2 × 1) surface was passivated by the adsorption of allylamine.  相似文献   

12.
A thin superconducting wire (bridge) subjected to a voltage gradient is studied via the time-dependent Ginzburg-Landau system under bridge geometry boundary conditions. Our numerical experiments reveal a rich array of phase slip center behavior, period-doubling, period-tripling and quasi-periodic solutions. We show that the parameter plane (L, V), where 2L =  wire length, V =  voltage, is partitioned into regimes, where the solutions exhibit different periodicity. In particular we find that when L is below a certain critical value, the system always evolves to a state that has the basic Josephson period P = 2π/V.  相似文献   

13.
In this work, the adsorption of several unsaturated hydrocarbon molecules on a stepped Pd(4 2 2) surface was studied. Using a periodic method based on the Density Functional Theory (DFT) formalism, different adsorption geometries for ethylene, three butene isomers (cis/trans-2-butene and 1-butene), acetylene and 2-butyne were investigated. The results were compared with those obtained for a free defect surface as Pd(1 1 1). The 1-butene is more stable on the free defect surface than on Pd(4 2 2). On the stepped surface, the olefins adsorb tilted towards the step and increases, in almost all the cases, the magnitude of the adsorption energy. Conversely, the 3-fold site is the most stable for the alkynes adsorption on the stepped surface, as it was found on Pd(1 1 1). The analysis of the dipole moment change indicate a charge transfer from the double bond of the olefin to the metallic surface, being higher for the Pd(1 1 1) surface. In case of the alkynes, an important back-donation is produced. Except the alkynes and the 1-butene molecule, the results show the preference of ethylene and cis/trans-2-butene to be adsorbed on the stepped surface. These observations are related with experimental catalytic results.  相似文献   

14.
The adsorption of coronene (C24H12) on the Si(1 1 1)-(7 × 7) surface is studied using scanning tunneling microscopy (STM). Upon room temperature submonolayer deposition, we find that the coronene molecules preferentially adsorb on the unfaulted half of the 7 × 7 unit cell. Molecules adsorbed on different sites can be induced to move to the preferential sites by the action of the tip in repeated image scans. Imaging of the molecules is strongly bias dependent, and also critically depends on the adsorption site. We analyze the results in terms of differential bonding strength for the different adsorption sites and we identify those substrate atoms which participate in the bonding with the molecule.  相似文献   

15.
Structural, energetic and electronic properties of water molecules adsorbed on β-Si3N4 (0 0 0 1) surface, at various coverages, are investigated using density functional theory. At low coverages (θ ? 0.5), it is found that all H2O molecules undergo spontaneous dissociation forming hydroxyl (OH) and imino (NH) groups where the reactive sites are identified, a result shown for the first time using ab initio theory. For higher coverages (θ > 0.5), only partial dissociation takes place where some of the molecules stay intact being bound via H-bond in good agreement with experimental findings. The driving force for the water dissociation has been identified to be dangling bonds on lower coordinated N and Si surface atoms showing that not all surface atoms are reactive corroborating with previous experimental findings.  相似文献   

16.
The characteristics of interaction between C60 molecules and Si(1 1 1)-7×7, Ag/Si(1 1 1)-√3×√3 R30° and layered material MoS2 surfaces have been investigated using electron-energy-loss spectroscopy (EELS). The EEL spectrum of C60/Si(1 1 1)-7×7 shows a new peak at loss energy of 2.7 eV. This indicates the existence of charge transfer from the substrate to C60 molecules. The EEL spectrum of a C60 monolayer film grown on a cleaved surface of MoS2 is almost the same as that of bulk C60. The EEL spectrum of a C60 monolayer film on an Ag/Si(1 1 1) surface is quite different from that on a clean Si(1 1 1)-7×7 surface, although the films on those substrates have the same epitaxial arrangement. Furthermore, intensities of energy-loss peaks of C60/Ag/Si(1 1 1) are slightly smaller than those of C60/MoS2 in spite of having the same loss-energy. This suggests that the interaction between C60 molecules and the Ag/Si(1 1 1) surface is stronger than that between C60 molecules and the MoS2 surface.  相似文献   

17.
Metal-free phthalocyanine (Pc) molecules adsorbed on the Au(110) surface have been studied both experimentally (STM, LEED) and with density functional calculations. A strong interaction between substrate and adsorbate is observed. On the one hand, a clear template effect of the anisotropic substrate is observed: already at low coverages, the Pc molecules adsorb in various typical row patterns. On the other hand, the molecular adsorption modifies the substrate: at coverages higher than 0.25 monolayers, the usual (1 × 2) reconstruction is converted to a (1 × 3) reconstruction. First principle DFT calculations yield adsorption geometries that agree with the measured STM images and adsorption energies in the range of 2–3 eV. The adsorption leads to covalent and van der Waals interactions between adsorbate and substrate and is accompanied by a considerable charge transfer.  相似文献   

18.
In the present work, the use of high power ultrasound as a process tool for the removal of persistent organic pollutants (POPs) from soil and the treatment of bauxite red mud waste from the Bayer process is discussed. Laboratory scale experiments have confirmed that the application of high power ultrasound to slurries of contaminated soil and of bauxite ore can treat two major environmental problems cost-effectively. Destruction rates of POPs in soil of 90% and higher have been achieved whereas 85% iron oxide has been extracted from red mud waste leaving a low-iron fraction of approximately 50% by weight which is more environmentally friendly.A 4 × 4 kW pilot plant capable of treating 2.5 tonnes of slurry per day has been commissioned to provide more accurate estimates of power and energy requirements to allow scale-up to industrial use.  相似文献   

19.
V. De Renzi 《Surface science》2009,603(10-12):1518-1525
In this work, I review our recent results on the electronic properties of thiolate/metal interface. Work function change, molecular level alignment and interfacial state formation of the methylthiolate/Au(1 1 1) and dimethyl-disulfide/Au(1 1 1) interfaces are investigated by means of UPS and XPS. A complete picture of the electronic properties of both the dimethyl-disulfide (DMDS) weakly-adsorbed and the methylthiolate (MT) chemisorbed phases is obtained by direct quantitative comparison between the experiment and theory. The modifications of the electronic properties of the DMDS thin film, induced by a MT buffer layer are also discussed.Moreover, the cysteine/Au(1 1 1) system is investigated as an example of interface formed by molecules with large intrinsic dipole moment. Finally, surface inhomogeneity and its influence on the interface electronic properties is briefly discussed, in light of the important concept of local work function.  相似文献   

20.
《Solid State Ionics》2006,177(7-8):741-747
A novel single ion conductive polymer electrolyte was developed by covalently linking an arylsulfonimide substituent to the polyphosphazene backbone. Polymeric single-ion conductors incorporate the anion of a salt either into the polymer backbone or as a pendent group linked to the polymer backbone. Immobilization of the anion could provide access to electrochemical devices that would be less vulnerable to increased resistance associated with salt concentration gradients at the interfaces during charging and discharging. In this work, an immobilized sulfonimide lithium salt is the source of lithium cations, while a cation-solvating cosubstituent, 2-(2-methoxyethoxy)ethoxy, was used to increase free volume and assist cation transport. The ionic conductivities showed a dependence on the percentage of lithiated sulfonimide substituent present. Increasing amounts of the lithium sulfonimide component increased the charge carrier concentration but decreased the ionic conductivity due to decreased macromolecular motion and possible increased shielding of the nitrogen atoms in the polyphosphazene backbone. Maximum ionic conductivity values of 2.45 × 10 6 S/cm at ambient temperature and 4.99 × 10 5 S/cm at 80 °C were obtained. Gel polymer electrolytes containing N-methyl-2-pyrrolidone gave ionic conductivities in the 10 3 S/cm range. The ion conduction process was investigated through model polymers that contained the non-immobilized sulfonimide — systems that had higher conductivities than their single ion counterparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号