首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of Non》2006,352(40-41):4155-4165
In the last decade, we have developed a set of experimental techniques for in-house X-ray diffraction measurements under high-temperature (up to about 2300 K) and high-pressure (up to 10 GPa and 1500 K, up to 100 GPa and 700 K) conditions, electron energy-loss and Auger measurements for surface electronic structure measurements at high-temperature (up to about 1800 K), and electrical resistance measurements covering both low-temperatures (2 K) and high-temperatures/high-pressures (1500 K, 7 GPa) conditions. In this paper we discuss some important technical features and possibilities of these new equipments and present novel data collected for phase transitions and structural modifications occurring in liquid and solid systems. In particular, we present new results about phase transitions and undercooling of bismuth under pressure, extreme undercooling and metastable states in gallium films, and surface phase transitions of Si at high-temperatures. The relevance of these experiments to the exploitation of the potential of equipments available at synchrotron radiation facilities is emphasized.  相似文献   

2.
《Journal of Non》2006,352(38-39):4093-4100
Thin films of Al2O3 have been deposited on polished silica glass substrates at room temperature by sol–gel dip coating technique followed by two different exposure methods. One set was annealed at different temperatures ranging from 200 °C to 800 °C for 10 h and a second set was exposed to microwave (2.45 MHz) radiation at different powers for 10 min. The lower temperature and shorter time with microwave irradiation might be ascribed to the activating and facilitating effect of microwaves on solid phase diffusion. Unlike other preparation methods, microwave heating is generally quite faster, and energy efficient. X-ray diffraction (XRD) and scanning electron microscopy (SEM), energy dispersive X-ray analysis techniques have been employed to characterize structural, morphological and elemental compositions of the films. Adhesion strength failure measurements on films performed by scratch test in progressive loading sequence have shown critical loads up to 25 N (partial perforation) for both annealed films and films exposed to microwave irradiation. Nanohardness indentation tests of the films exposed (800 W) to microwave have shown hardness of 8.3 GPa with elastic modulus of 120 GPa compared to the conventional annealed film (800°) of 4.5 GPa with elastic modulus of 90 GPa.  相似文献   

3.
《Journal of Non》2006,352(21-22):2073-2081
Crystallization of a Li2O · 2SiO2 (LS2) glass subjected to a uniform hydrostatic pressure of 4.5 and 6 GPa was investigated up to a temperature of 750 °C. The density of the compressed glass is ∼2% greater at 4.5 GPa than 1 atm and, depending on the processing temperature, up to 10% greater at 6 GPa. Crystal growth rates investigated as a function of temperature and pressure show that lithium disilicate crystal growth is an order of magnitude slower at 4.5 GPa than 1 atm resulting in a shift of +45 °C (±10 °C) in the growth rate curve at high pressure compared to 1 atm conditions. At 6 GPa lithium disilicate crystallization is suppressed entirely, while a new high pressure lithium metasilicate crystallizes at temperatures 95 °C (±10 °C) higher than those reported for lithium disilicate crystallization at 1 atm. The observed decrease in crystal growth rate with increasing pressure for the lithium disilicate glass up to 750 °C is attributed to an increase in viscosity with pressure associated with fundamental changes in glass structure accommodating densification.  相似文献   

4.
《Journal of Non》2006,352(38-39):4101-4111
The structure of Li2O · 2SiO2 (LS2) glass was investigated as a function of pressure and temperature up to 6 GPa and 750 °C, respectively, using XRD, TEM, IR, Raman and NMR spectroscopy. Glass densified at 6 GPa has an average Si–O–Si bond angle ∼7° lower than that found in glass processed at 4.5 GPa. At 4.5 GPa, lithium disilicate crystallizes from the glass, while at 6 GPa new high pressure form of lithium metasilicate crystallizes. This new phase, while having lithium metasilicate crystal symmetry, contains at least four different Si sites. NMR results for 6 GPa indicate the presence of Q4 species with (Q4)Si–O–Si(Q4) bond angles of ∼157°. This is the first reported occurrence of Q4 species with such large bond angles in alumina free alkali silicate glass. No five- or six-coordinated Si are found.  相似文献   

5.
《Journal of Non》2007,353(18-21):1755-1758
In situ high energy X-ray diffraction and Raman experiments have been carried out to probe the structure changes of vitreous As2O3 under pressure. The first sharp diffraction peak reduces in intensity up to 10 GPa, indicating a breakdown of intermediate range order with pressure. All features in the Raman spectra broaden with increasing pressure up to 11.6 GPa. The mode at 378 cm−1 associated with As4O6 molecule-like vibrations increases in intensity up to 6.2 GPa and decreases at higher pressures. In addition, X-ray and neutron structure factors have been measured for normal density and permanently densified As2O3 glasses recovered from 10 and 23 GPa. The results show the local AsO3 pyramids and 3-membered rings essentially remain intact after compression. The increase in density is mainly associated with an inward shift of the third nearest neighbor peak in the X-ray radial distribution function, which indicates an increased packing of 3-membered AsO3 rings.  相似文献   

6.
Synthesis of multi-walled carbon nanotubes (MWCNTs) doped silica xerogel films was reported in this work. A crucial step of introducing MWCNTs was achieved by functionalizing them by acid treatment to form stable and homogenous SiO2/MWCNTs sol. Scanning electron microscopy showed spherical particles in honeycomb network structure for undoped xerogel films whereas dispersion and wrapping of MWCNTs in silica matrix was observed for MWCNTs doped films. Various bond formations during the sol–gel process and surface modification were confirmed using Fourier transform infra-red and detailed study on the chemical bonding state of the films was carried out using X-ray photoelectron spectroscopy. Nanoindentation studies showed that the mechanical properties of MWCNTs doped xerogel film increase dramatically: higher modulus (E = 2.127 ± 0.095 GPa) and hardness (H = 0.035 ± 0.017 GPa) values than those of pristine xerogel film (E = 0.234 ± 0.058 GPa, H = 0.01 ± 0.003 GPa).  相似文献   

7.
Application of non-contact and rapid laser technique, which is minimally invasive, non-contaminant and efficient method, for ancient glass investigation and cleaning is highly desirable for restoration purposes. Irradiation of Roman glass dated from 1st to 4th/5th century AD with TEA CO2 (wavelength 10.6 μm; pulse duration tp = 100 ns), Nd:YAG (wavelength 1064 nm and 532 nm; tp = 150 ps) and ruby laser (wavelength 694 nm; tp = 30 ns) in air ambience was studied. For all three lasers, moderate energy densities (15–30 J/cm2) induced significant changes of morphology — from superficial exfoliation and occurrence of mosaic structure after few pulses to deep damages and hydrodynamic features after higher number of accumulated shots. Irradiation with moderate energy density, accompanied with plasma appearance in front of the samples, is convenient for numerous potential applications, particularly surface elemental analysis such as laser induced breakdown spectroscopy. On the other hand, lower densities are more suitable for Roman glass cleaning. Calculations of Roman glass surface temperature have shown that pulsed CO2 laser is favorable for surface cleaning and optimal fluence is ~ 2 J/cm2. This was confirmed by additional experiments for fluences 1.5 and 3 J/cm2. Morphological changes on the Roman glass surface induced by lasers were studied by optical microscopy (OM) and scanning electron microscopy (SEM). The composition of Roman glass was determined by energy dispersive X-ray analysis (EDX) and inductively coupled plasma (ICP) method. Chemical analysis confirmed that the investigated glass dates from the Roman period.  相似文献   

8.
New chalcogenide glasses from the GeSe2–GeTe–PbTe system were synthesized. The glass forming region was determined using visual, X-ray diffraction and scanning electron microscopy analyses. It is extended towards the GeSe2 and lies partially on the GeSe2–GeTe (0–58 mol% GeTe) and GeSe2–PbTe (20.0–57.5 mol% PbTe) sides. No glasses were obtained in the GeTe–PbTe system. The investigated physicochemical properties vary between 4.04–6.21 g/cm3 (density, d); 97–121 kgf/mm2 (microhardness, HV); ?0.187 ÷ 0.007 (compactness, C) and 14.3–17.8 GPa (elasticity modulus, E), respectively.  相似文献   

9.
Normal silica glass is usually referred to as low density amorphous silica as it can be converted to high density amorphous silica by a hydrostatic pressure (polyamorphic transition). In this work in situ Raman experiments are performed in a diamond anvil cell up to 18 GPa. The pressure effects on the structure of silica after successive compression decompression experiments are analyzed. The mode Grüneisen parameters corresponding to the elastic compression of high density amorphous silica are obtained and compared with those of normal silica. A reorganization of the high density amorphous silica below 3 GPa is evidenced.  相似文献   

10.
The morphology and dispersion state of Ba2TiSi2O8 (BTS) nanocrystals in transparent glass-ceramics (composition: 40BaO–20TiO2–40SiO2) were examined from high resolution transmission electron microscope observations, and their nano-scale deformation behavior was examined using Berkovich nanoindentation technique (standard-type and continuous stiffness measurement (CSM)-type). In the early stage of crystallization, BTS crystalline layers with a thickness of ~ 120 nm were formed at the surface and ellipsoid-shaped crystallites with a diameter of 100–200 nm were dispersed in the glass matrix. In the late stage, BTS crystals with a diameter of 200–400 nm were formed densely, but a glassy phase was present between BTS crystals. The Young's modulus evaluated from CSM-type nanoindentation measurements for a deformation scale of about 100 nm shows the values of 98 GPa for the glass and 110 GPa for the glass-ceramics with nanocrystals. It was suggested that CSM-type measurements are very sensitive in the nano-scaled homogeneity in the heat-treated samples.  相似文献   

11.
《Journal of Non》2007,353(18-21):1849-1853
Recent molecular dynamics (MD) results for (Na2O)x(SiO2)1−x and (CaO)x(SiO2)1−x glasses show that co-ordination of bridging oxygen (Ob) by modifiers (M) is a normal structural feature. This can be explained as a consequence of the limitation on oxygen co-ordination in network oxides, a common rule of thumb being that total co-ordination of oxygen by (Si + M) is ⩽4. This gives an upper limit on co-ordination of non-bridging oxygen (Onb) by modifiers of NOnbM  m with m = 3, corresponding to NMOnb  mv, where v is modifier valence. If modifier co-ordination exceeds this limit, i.e. NMO > mv, then there is bonding of Ob to modifiers, i.e. NObM > 0. This is the case in alkali and alkaline earth silicate crystals (apart from Be and Mg), and is predicted to be a feature of glasses in these systems. An illustration of the influence of oxygen co-ordination is given from MD models of (CaO)0.33 (SiO2)0.67 glass at pressures of 5 and 10 GPa. The main effect of densification is to increase the co-ordination of Ca by Ob. This can be understood because at 0 GPa the co-ordination of Onb by Ca is already high, with NOnbCa  2.7, but the co-ordination of Ob by Ca is less high, with NObCa  1, and so can more easily increase.  相似文献   

12.
We have used plasma enhanced chemical vapor deposition (PECVD) to deposit silicon thin films (~0.2–1 μm) with different crystallinity fractions on Nanosensors PtIr5 coated atomic force microscopy (AFM) cantilevers (450 × 50 × 2 μm3). Microscopic measurements of Raman scattering were used to map both internal stress and extrinsic stress induced in the films by bending the cantilevers using a nanomanipulator (Kleindiek Nanotechnik MM3A). Thanks to the excellent elasticity of the cantilevers, the films could be bent to curvature radii down to 300 μm. We observed the stress induced shift of the TO–LO phonon Raman band of more than 3 cm?1 for fully microcrystalline film corresponding to the stress ~0.8 GPa. The shift of the similar film with amorphous structure was ~2.5 cm?1.  相似文献   

13.
The Si–TaSi2 eutectic in situ composite is a favorable field emission material due to relatively low work function, good electron conductivity, and three-dimensional array of Schottky junctions grown in the composite spontaneously. The preferential orientation during directional solidification is determined by the growth anisotropy. In order to obtain the preferential direction of the steady-state crystal growth, the transmission electron microscopy (TEM) is used for analysis. It is found that the preferential orientation of the Si-TaSi2 eutectic in situ composite prepared by Czochralski (CZ) technique is [3  2¯] Si∥[0 0 0 1] TaSi2, (2 2 0)Si∥(2  0 0) TaSi2. Whereas the preferential orientation of the Si–TaSi2 eutectic in situ composite prepared by electron beam floating zone melting (EBFZM) technique is [0   ]] Si∥[0 0 0 1] TaSi2,(0  1) Si∥(0  1 1)TaSi2. The preferential directions of the Si-TaSi2 eutectic in situ composites prepared by two kinds of crystal growth techniques are distinctly different from each other, which results from different solid–liquid interface temperatures on account of the different crystal growth conditions, e.g. different solidification rate, different temperature gradient, different solid–liquid interface curvature and different kinetic undercooling.  相似文献   

14.
We report on the growth of thick GaN epilayers on 4-in. Si(1 1 1) substrates by metalorganic chemical vapor deposition. Using intercalated AlN layers that contribute to counterbalance the tensile strain induced by the thermal mismatch between gallium nitride and the silicon substrate, up to 6.7 μm thick crack-free group III-nitride layers have been grown. Root mean-squares surface roughness of 0.5 nm, threading dislocation densities of 1.1×109 cm?2, as well as X-ray diffraction (XRD) full widths at half-maximum (FWHM) of 406 arcsec for the GaN(0 0 2) and of 1148 arcsec for the GaN(3 0 2) reflection have been measured. The donor bound exciton has a low-temperature photoluminescence line width of 12 meV. The correlation between the threading dislocation density and XRD FWHM, as well as the correlation between the wafer curvature and the GaN in-plane stress is discussed. An increase of the tensile stress is observed upon n-type doping of GaN by silicon.  相似文献   

15.
《Journal of Non》2007,353(13-15):1337-1340
The preparation of mixed glasses of As2S3−xSex (x = 0–3) and (1  y) · As2S3y · Sb2S3 (y = 0–1) has been carried out by an in situ pouring technique. X-ray diffraction (XRD) was used to confirm the glassy nature of the materials and monitor devitrification. Visible-IR transmission, photoluminescence, refractive index and micro-Raman were measured as a function of composition. Microhardness (MH) and thermal expansion coefficient (TEC) were also measured. Raman peaks in As2S3 and As2Se3 were observed around 338 cm−1 and 230 cm−1, respectively in this first composition series in which S was replaced by Se. When As was replaced by Sb, in the case of second composition series, the As2S3 related Raman peak became broader and shifted to lower wave number, reflecting some structural change/devitrification. MH increased (1.31–1.50 GPa) with Se and Sb content while the TEC was found to decrease (2.5–1.4 × 10−5/K). The progressive increase in the content of either Se or Sb in As2S3 is anticipated to modify bond lengths and bond angles. The combined effect of these structural modifications would change the local structure of the glass forming a more rigid glass network thereby increasing the hardness and decreasing TEC.  相似文献   

16.
The directionally solidified Si–TaSi2 eutectic in situ composites, which have highly aligned and uniformly distributed TaSi2 fibers embedded in the Si continuous matrix, are obtained by electron beam floating zone melting (EBFZM) technique at the solidification rate range 0.3–9.0 mm/min. The preferential orientation of the Si–TaSi2 eutectic is also studied by selected area electron diffraction (SAED), which is [0  1¯]Si∥[0 0 0 1]TaSi2 and (0  1)Si∥(0  1 1)TaSi2. Moreover, field emission properties of the Si–TaSi2 eutectic in situ composites are investigated by transparent anode imaging technology. Approximately straight F–N curves show that this material has excellent field emission properties.  相似文献   

17.
Al thin films have been grown on single-crystal MgAl2O4 spinel substrates using solid source molecular beam epitaxy. The structural properties of Al layers were systematically investigated as a function of substrate orientation. X-ray diffraction reveals that Al layers are coherently grown on both (0 0 1)- and (1 1 1)-oriented spinel substrates. However, scanning electron microscopy and atomic force microscopy show that Al layers on (0 0 1) spinel substrates display smoother surface morphology than those grown on (1 1 1) spinel substrates. Additionally, electron backscatter diffraction and transmission electron microscopy demonstrate the presence of a high density of twin domain structures in Al thin films grown on (1 1 1) spinel substrates.  相似文献   

18.
《Journal of Crystal Growth》2003,247(1-2):77-83
Microtwins in semi-metal thulium phosphide (TmP) epilayers grown on (0 0 1) GaAs substrates by molecular beam epitaxy have been studied by transmission electron microscopy. Selected area diffraction patterns show extra spots along 〈1 1 1〉 and 〈2 2 4〉 corresponding to three times the normal rock-salt periodicity. Only one or two twin variants are found in the crystal. The occurrence of the observed microtwins in the TmP-GaAs heterostructure can be accounted for by the growth-accident mechanism, i.e., the formation of microtwins is via growth accidents in the stacking sequence on {1 1 1} and {1 1 2} planes. The growth accidents appear to occur due to rapid growth rates and/or contamination.  相似文献   

19.
《Journal of Non》2007,353(44-46):4195-4198
To investigate temperature dependence of paracrystallinity for opal-CT, a bentonite containing approximately 34% by mass opal-CT have been used as material. Since opal-CT can not be separated entirely, the bentonite samples have been heated at different temperatures in the interval from 200 °C to 1300 °C for 2 h, and at 1050 °C for different time intervals changing from 2 h to 24 h. The X-ray diffraction (XRD) patterns of the original and heated samples have been obtained. The increase in the paracrystallinity has been discussed according to the thermal behavior of the relative intensity (I/I0), relative full width at half-maximum peak height (FWHM/FWHM0  W) and d-value of the most characteristics XRD peak for opal-CT between 0.405 nm and 0.410 nm region. The increase in I/I0 from 1 to 3, and in d(l 0 1) spacing from 0.4050 to 0.4095 and decrease in W from 1 to 0.6 show that there is an increase in paracrystallinity for opal-CT by rising the temperatures between 800 °C and 1300 °C. The increase, of I/I0 value from 1 to 5 by heating at 1050 °C while time increases from 2 h to 24 h shows that the paracrystallinity of opal-CT increase by time and reaches steady state condition approximately 1300 °C.  相似文献   

20.
Reinhard Conradt 《Journal of Non》2009,355(10-12):636-641
The paper deals with the entropy difference between frozen-in phases and their equilibrium counterparts. First, the nature of data compiled in thermochemical data collections are briefly reviewed, comprising data for non-equilibrium phases. Then, experimental evidence from earlier literature is compiled showing that the conventional entropy of a frozen-in phase at zero Kelvin assumes a non-zero residual value S(0). Based on calorimetric data from multiple sources, the same evidence is elaborated for diopside glass, yielding Sglass(0) = 24.8 ± 3 J/(mol K), a value reproducing a result publishes earlier. The zero Kelvin enthalpy of this glass is Hglass(0) = 81±8 kJ/mol. For Sglass(0), a structural interpretation in terms of silicate chain mixing is proposed, yielding a lower threshold for Sglass(0). From the point of view of statistical mechanics, non-zero residual entropies of frozen-in phases can be derived from ensemble averages, however, not from time averages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号