首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Polyhedron》1986,5(3):921-923
The treatment of (η-C5H5)OMo(μ-O)2MoO(η-C5H5) with excess phenylisocyanate at reflux in tetrahydrofuran yields the arylimido-substituted complex (η-C5H5)(NPh)Mo(η-NPh)2Mo(NPh)(η-C5H5), which has been characterized by elemental analysis, and mass, IR and 1H NMR spectra.  相似文献   

2.
3.
Density functional theory calculations have been performed for the dimethylgallyl complexes of iron, ruthenium, and osmium [(η(5)-C(5)H(5))(L)(2)M(GaMe(2)] (M = Fe, Ru, Os; L = CO, PMe(3)) at the DFT/BP86/TZ2P/ZORA level of theory. The calculated geometry of the iron complex [(η(5)-C(5)H(5))(CO)(2)Fe(GaMe(2))] is in excellent agreement with structurally characterized complex [(η(5)-C(5)H(5))(CO)(2)Fe(Ga(t)Bu(2))]. The Pauling bond order of the optimized structures shows that the M-Ga bonds in these complexes are nearly M-Ga single bond. Upon going from M = Fe to M = Os, the calculated M-Ga bond distance increases, while on substitution of the CO ligand by PMe(3), the calculated M-Ga bond distances decrease. The π-bonding component of the total orbital contribution is significantly smaller than that of σ-bonding. Thus, in these complexes the GaX(2) ligand behaves predominantly as a σ-donor. The contributions of the electrostatic interaction terms ΔE(elstat) are significantly smaller in all gallyl complexes than the covalent bonding ΔE(orb) term. The absolute values of the ΔE(Pauli), ΔE(int), and ΔE(elstat) contributions to the M-Ga bonds increases in both sets of complexes via the order Fe < Ru < Os. The Ga-C(CO) and Ga-P bond distances are smaller than the sum of van der Waal radii and, thus, suggest the presence of weak intermolecular Ga-C(CO) and Ga-P interactions.  相似文献   

4.
Complete self-recognition of chirality is observed in the Michael addition of the enolate derived from R,S-[η5-C5H5Fe(CO)(PPh3-COCH3] to the acryloyl complex R,S-[(η5-C5H5Fe(CO)(PPh3)-COCHCH2)] to generate exclusively the single diastereoisomer of the glutaroyl complex RR,SS-[(η5-C5H5)Fe(CO)(PPh3)COCH2]2CH2.  相似文献   

5.
Russian Journal of Physical Chemistry A - This study investigates the effect of different substituents on the isomerization reaction of the [(η5‑C5H5)(CO)(Me)Re≡CC6H5] carbyne...  相似文献   

6.
《Solid State Sciences》2001,3(7):783-788
The synthesis and structural characterization of the complex [Ru(η6-C6H6)(η6-C6H4(CH3)COOCH3)] [BF4]2 (2) and of its precursor [Ru(η6-C6H4(CH3)COOCH3)Cl2]2 (1) are reported. Compound (2) has been characterized in two polymorphic modifications (2a and 2b) and the molecular organization in the solid state has been investigated. The complex [Ru(η5-C5H5)(η6-C6H5OH)][PF6] (3) has also been investigated; it has been shown to possess a disorder similar to that observed in the high temperature phase of related systems such as [Ru(η5-C5H5)(η6-C6H6)][PF6].  相似文献   

7.
The crystal and molecular structures of (η5-C5H5)Fe[η5--C5H4CCo3(CO)9] (1), Pna21, α 17.354, b 11.463, c 11.207 Å Z = 4, R = 0.053, Rw = 0.056 for 939 reflections (I>3σ(I)) at 293 K, and (η5-C5H5Fe[η5--C5H4CCo35C5H5)3CH] (2), P21/n, a 13.807(9), b 11.254(4), c 13.991(9) Å, β 99.98(5)°, Z = 4, R = 0.033 and Rw = 0.033 for 3051 observed reflections (I>3σ(I)) at 180 K, have been determined by X-ray methods.The results provide a detailed characterisation of related tricobalt-carbon complexes directly bound to ferrocene residues. In 1 the ferrocenyl moiety tops the pyramidal CCo3 cluster core, while in 2 the CCo3C core is bipyramidal with a ferrocenyl substituent on one capping carbon atom and a hydrogen atom at the other. In both cases the ferrocenyl group is tilted towards one cobalt atom of the cluster core, a distortion believed to be the consequence of the non-degeneracy of the carbyne p(π) orbitals resulting from a cooperative π-interaction between the clusters and the ferrocenyl substituents.  相似文献   

8.
9.
The square-planar rhodium(I) complexes trans-[RhCl(=CPh2)(L)2] (L = SbiPr3, PiPr3, PPh3) react with LiC5H4SiMe3 to give the halfsandwich type compounds [(η5-C5H4SiMe3)Rh(=CPh2)(L)] 7–9 in good to excellent yields. While the phosphine complexes 8 and 9 are rather inert toward Lewis bases, the stibine derivative 7 reacts with CO, CNtBu and PMe3 to afford the corresponding substitution products [(η5-C5H4SiMe3)Rh(=CPh2)(L′] 10–12. In contrast, the reaction of 7 with C2H4 leads to the displacement of the carbene ligand and to the formation of the ethene complex [(η5-C5H4SiMe3)Rh(C2H4)(SbiPr3)] 14 together with the C−C coupling product Ph2C=CHCH313. Upon treatment of 9 (L = PPh3) with an equimolar amount of HCl, the chloro(hydrido)rhodium(III) compound [{η5-C5H3)(CHPH2)(SiMe3)}RhHCl(PPh3)] 15 is formed. With an excess of HCl, a mixture of two products is obtained, one of which, with the composition [η5-C5H4)CHPh2)RhCl2(PPH3)] 17 has been independently prepared from η5-C5H5)Rh(=CPh2)(PPh3] 18 and 2 equiv of HCl.  相似文献   

10.
The complex [(η5-C5H5)Fe(CO)(PPh3)CH2CH3] is shown by 1H NMR spectroscopy and an X-ray crystal structure analysis to adopt a single conformation with the methyl group residing between the cyclopentadienyl and carbon monoxide ligands.  相似文献   

11.
The reaction of [(η5-C9H7)Ru(η2-dppe)Cl] (1) with monodentate nitriles, (L) in the presence of NH4PF6 afforded the complexes [(η5-C9H7)Ru(η2-dppe)(L)]PF6, with L?=?CH3CN (2a), CH3CH=CHCN (2b), NCC6H4CN (2c), C6H5CH2CN (2d), respectively. However, reaction of 1 with NH4PF6 in methanol yielded an amine complex of the type [(η5-C9H7) Ru(η2-dppe)(NH3)]PF6 (3a). The complexes were fully characterized by spectroscopy and analytical data. The molecular structures of the complexes [(η5-C9H7)Ru(η2-dppe) (CH3CN)]PF6 (2a) and [(η5-C9H7)Ru(η2-dppe)(NH3)]PF6 (3a) have been determined by single crystal X-ray analyses.  相似文献   

12.
Density Functional Theory calculations have been performed for the cationic half-sandwich gallylene complexes of iron, ruthenium, and osmium [(η(5)-C(5)H(5))(L)(2)M(GaX)](+) (M = Fe, L = CO, PMe(3); X = Cl, Br, I, NMe(2), Mes; M = Ru, Os: L = CO, PMe(3); X = I, NMe(2), Mes) at the BP86/TZ2P/ZORA level of theory. Calculated geometric parameters for the model iron iodogallylene system [(η(5)-C(5)H(5))(Me(3)P)(2)Fe(GaI)](+) are in excellent agreement with the recently reported experimental values for [(η(5)-C(5)Me(5))(dppe)Fe(GaI)](+). The M-Ga bonds in these systems are shorter than expected for single bonds, an observation attributed not to significant M-Ga π orbital contributions, but due instead primarily to high gallium s-orbital contributions to the M-Ga bonding orbitals. Such a finding is in line with the tenets of Bent's Rule insofar as correspondingly greater gallium p-orbital character is found in the bonds to the (more electronegative) gallylene substituent X. Consistent with this, ΔE(σ) is found to be overwhelmingly the dominant contribution to the orbital interaction between [(η(5)-C(5)H(5))(L)(2)M](+) and [GaX] fragments (with ΔE(π) equating to only 8.0-18.6% of the total orbital contributions); GaX ligands thus behave as predominantly σ-donor ligands. Electrostatic contributions to the overall interaction energy ΔE(int) are also very important, being comparable in magnitude (or in some cases even larger than) the corresponding orbital interactions.  相似文献   

13.
Degradation of a (-C7H7)(OC)2MoRu(CO)2(-C5H5)/carbon powder composite under appropriate thermal conditions affords a nanocomposite containing crystalline nanoclusters of Mo–Ru alloy highly dispersed on the carbon support. The alloy nanoparticles have an average diameter of 2.2 nm and crystallize as a fully disordered fcc lattice having a cell constant of 4.09 Å. When tested as an cathode catalyst in a direct methanol fuel cell, this nanocomposite shows significant methanol tolerance but affords current production too low to be of practical importance.  相似文献   

14.
Thermolysis of cyclooctaselenadiazole (2) yields only selenium-containing products. Compound 2 reacts with CpCo sources to give [(η5-C5H5)CO]22η32-C8H6Se), a fluxional compound whose structure has been determined by X-Ray crystallography.  相似文献   

15.
During our low temperature NMR studies we observed two rotational isomers of the carbene complex [(η5-C5H5)(CO)2FeCH[(η6-o-MeOC6H4)Cr(CO)3]]+ (3) with the O–Me group either anti or anti to the Fp moiety. While the Cr(CO)3 group very effectively shields one face of the carbene complex from attack by the olefin, the presence of anti and anti isomers allows for the formation of both R and S configuration on C-1 of the cyclopropane through a backside or a frontside ring closure mechanism. The reaction of olefin with anti R-3 can result in R-configuration of the cyclopropane carbon C-1 through a frontside closure mechanism, or in S-configuration if backside closure takes place. In a similar manner, anti R-3 may produce S-configuration through frontside closure or R-configuration through backside closure. We previously have shown by crystallography that reaction the R-isomer of 3 with 2-methyl-propene induces predominantly a R-configuration at C-1 of the resulting cyclopropane (RR-(−)-2,2 dimethyl-1-o-methoxyphenyl(tricarbonyl chromium)cyclopropane, whereas the S-carbene results in the corresponding SS isomer. These findings are consistent with cyclopropane formation from the syn isomer through a frontside closure mechanism or from anti isomer through a backside closure mechanism. In the case of [(η5-C5H5)(CO)2FeCH[(η6-o-MeC6H4)Cr(CO)3]]+ (4), only anti isomer is observed and optical rotation data indicate that the methylcarbene exhibits the same asymmetric induction (i.e., R-carbene yields R-cyclopropane C-1 and S-carbene yields S-cyclopropane C-1) as the methoxy analogue, and the assumption of the anti isomer being the reactive one then implies that the reaction proceeds through a backside closure mechanism rather a frontside mechanism. It is very likely that this preference is also valid for the methoxy substituted complex 4. Our results on 4 indicate that the enantioselectivity of the cyclopropanation reaction is not determined by the relative abundance of the isomers. As the syn isomer is the more abundant one, the anti isomer has to be the more reactive one compared to the syn isomer. Interchange of syn and anti isomers occurs fast compared to the rate of reaction of the carbene with olefin. The fast rate of interchange of syn and anti isomers relative to the rate of reaction with olefin precludes the direct observation of any differential reactivity form a change in the syn to anti ratio in the NMR spectrum. However, the in general lower ee values observed for 3 compared with 4 are consistent with the fact that the reactive isomer is less abundant in this case. Our data thus show that enantioselectivity of cyclopropanation with “chiral at carbene” complexes is controlled by the higher reactivity of the anti isomer and occurs through a backside ring closure mechanism.  相似文献   

16.
The reactions of [MCp*6-C6Me6)][PF6], M = Fe: 1, Ru: 2, Cp* = η5-C5Me5, with KOH (in DME) or tert-BuOK (in THF) and methyl iodide, allyl bromide or benzyl bromide are regioselective on the arene ligand only for 2, giving the complexes [RuCp*6-C6(CH2R)6}][PF6], R = methyl (3), allyl (4) or benzyl (5), although some formations of C-C bonds also occur on the Cp* ligand in the case of the reactions of allyl and benzyl bromides. This contrasts with the complete lack of regioselectivity formerly observed with the iron analogue 1, and is best taken into account by the difference of steric effects which are less marked in 2 than in 1.  相似文献   

17.
18.
The structure of the new compound [Mo(η5-C5H5)2(2-NHNC5H4)][PF6] (1) has been determined. The crystals are orthorhombic, space group Pca21 with a 20.807(1), b 8.0030(8), c 10.056(3) Å, V 1674.5 Å3, Z = 4. The structure of [Mo(η5-C5H5)2(2-ONC5H4)][PF6] (2) has also been determined. The crystals are orthorhombic, space group Pnma with a 12.727(3), b 10.174(2), c 12.918(1) Å, V 1672.8 Å3, Z = 4. The structures were solved by Patterson and difference electron density syntheses and refined by least-squares to R of 0.028 for 1287 reflections for 1 and 0.059 for 1178 reflections for 2.Although not isostructural the two cationic complexes have equivalent geometries with the normal bent bismetallocene structure. For 1 the MoN bond lengths are 2.160(8) and 2.142(9) Å, with a NMoN bond angle of 59.8(3)°, whereas for 2 MoO is 2.142(10), MoN is 2.138(11) Å, the NMoO angle is 61.2(4)°. These parameters are discussed and compared with the corresponding data for similar biscyclopentadienyl complexes of molybdenum(IV). Extended Hückel molecular orbital calculations have been carried out to throw light on the nature of the bonding between the metal and the bidentate ligand.  相似文献   

19.
The 13C {1H} NMR spectra of a series of complexes [(η5-C5H4Me)Fe(CO)(L)I] (L  t-BuNC, P(OMe)3, PMe3, PMe2Ph, PMePh3, PPh3 and P(C6H11)3) have been recorded and the five cyclopentadienyl resonances assigned to ring carbon atoms by means of CH correlated spectra. It has been observed that the C atoms ortho to the ring methyl group (C(2) and C(5)) as well as the quaternary C atom are always coupled to the ligand P atom. A correlation between the chemical shift difference Δ(C(2) – C(5)) and the Tolman cone angle, θ, has also been established.  相似文献   

20.
The first tetrahedral clusters containing a single naked antimony atom have been prepared by the thermolysis of [CpM(CO)3]2 (M=Mo or W) in the presence of gray antimony at 180°C in toluene in a sealed Carius tube. X-ray structural characterization revealed that, in addition to the incorporation of Sb in the cluster, it has also affected coupling of two Cp rings to form [(, 5: 5-C10H8)( 5-C5H5)-M3(CO)6( 3-Sb)]. It is only the second example of in situ formation of the fulvalene ligand for group-6 metal. Simultaneous with the C–C coupling reaction, a mirror of Sb forms on the reaction tube; this indicates that SbH3 is formed in the hydrogen abstraction step, which then subsequently decomposes at the tube wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号