首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pressure induced structural phase transition of mono-antimonides of lanthanum, cerium, praseodymium and neodymium (LnSb, Ln=La, Ce, Pr and Nd) has been studied theoretically using an inter-ionic potential with modified ionic charge which parametrically includes the effect of Coulomb screening by the delocalized f electrons of rare earth (RE) ion. The anomalous structural properties of these compounds have been interpreted in terms of the hybridization of f electrons with the conduction band and strong mixing of f states of Ln ion with the p orbital of neighbouring antimonide ion. All the four compounds are found to undergo from their initial NaCl (B1) phase to body centered tetragonal (BCT) phase at high pressure and agree well with the experimental results. The body centered tetragonal phase is viewed as distorted CsCl structure and is highly anisotropic with c/a=0.82. The transition pressure of LnSb compounds is observed to increase with decreasing lattice constant in NaCl phase. The nature of bonds between the ions is predicted by simulating the ion-ion (Ln-Ln and Ln-Sb) distances at high pressure. The calculated values of elastic constants are also reported.  相似文献   

2.
The structural and elastic properties of praseodymium monochalcogenides (PrX: X = S, Se, Te) and monopnictides (PrY: Y = P, As, Sb, Bi) with NaCl-type structure have been investigated by using an interionic potential theory with necessary modification to include the effect of Coulomb screening due to the delocalized f-electrons of rare earth ion. The calculations are done at ambient as well as at high pressure. The structure of the high pressure phase of PrX compounds is CsCl-type while all the PrY compounds have been found to undergo from their initial NaCl-type structure to high pressure body centered tetragonal (BCT) structure, which can be seen as the distorted CsCl-type with c/a ratio ≈ 0.82–0.87. The calculated transition pressures are in good agreement with the experimental results. The elastic properties like second-order elastic constants for PrX, Y compounds are calculated for the first time. The nature of the bonding is also predicted by calculating the distance between the ions with the increasing pressure.  相似文献   

3.
We preformed first-principle calculations for the structural, electronic, elastic and magnetic properties of Cu2GdIn, Ag2GdIn and Au2GdIn using the full-potential linearized augmented plane wave (FP-LAPW) scheme within the generalized gradient approximation by Wu and Cohen (GGA-WC), GGA+U, the local spin density approximation (LSDA) and LSDA+U. The lattice parameters, the bulk modulus and its pressure derivative and the elastic constants were determined. Also, we present the band structures and the densities of states. The electronic structures of the ferromagnetic configuration for Heusler compounds (X2GdIn) have a metallic character. The magnetic moments were mostly contributed by the rare-earth Gd 4f ion.  相似文献   

4.
The spectral properties of the intermetallic compounds NdNi5 ? x Cu x (x = 0, 1, 2) have been studied using optical ellipsometry in the wavelength range 0.22–16 μm. It has been established that substitution of copper atoms for nickel leads to noticeable changes in the optical absorption spectra, plasma frequencies, and relaxation frequencies of conduction electrons. Spin-polarized calculations of the electronic structure of these compounds have been performed in the local spin density approximation allowing for strong electron correlations (LSDA + U method) in the 4f shell of the rare-earth ion. The calculated electron densities of states have been used to interpret the experimental dispersion curves of optical conductivity in the interband light absorption region.  相似文献   

5.
The ground state electronic structure and thermal properties of B2-type intermetallic compounds AlRE (RE: Pm, Sm, Eu, Tb, Gd and Dy) have been studied using a self-consistent tight-binding linear muffin-tin orbital (TB-LMTO) method at ambient as well as at high pressure. These compounds show metallic behavior under ambient condition. The band structure, total energy, density of states and ground state properties like lattice parameter, bulk modulus are calculated in the present work. The Debye-Grüneisen model is used to calculate the Debye temperature and the Grüneisen constant. The calculated results are in good agreement with the reported experimental and other theoretical results. The variation in the Debye temperature with pressure has also been reported. We present a detailed analysis of the role of f electrons of RE in the AlRE system.  相似文献   

6.
The properties of ferromagnetic Gd as a host for IMPAC measurements have been investigated. The transient and internal magnetic fields at Cd, Nd, Sm, Dy, Er, Yb and Hf nuclei recoil implanted into polarized Gd at 80 K have been studied by the IMPAC technique. All available experimental transient field data for Gd have been analysed in the framework of the Lindhard-Winther theory. Empirical values of the parametersv p andC ion C atom have been deduced which give good agreement between experiments and theory. Internal magnetic fields at rare-earth nuclei in magnetized Gd at 80 K have been deduced. The results areH h.f. (NdGd)=?1370±440 kG,H h.f.(SmGd)=?1440±120 kG,H h.f.(DyGd)=1410±400 kG,H h.f.(ErGd)=2310±420 kG andH h.f.(YbGd)=?216±32 kG. The signs of these fields are, except for Yb which is in a 2+ ionic state, consistent with a ferromagnetic coupling between the 4f spins of the implanted ion and the Gd host. The deduced internal field at Hf in Gd is ?440±90 kG. The observed time-dependent interactions for rare-earth nuclei in ferromagnetic Gd are consistent with the Abragam-Pound theory. For the Cd isotopes,g-factors of the first 2+ states were deduced from the experiments. The results areg(110Cd)=0.49±0.11,g(114Cd)=0.34±0.09 andg(116Cd)=0.41±0.11. The use of transient magnetic fields forg-factor measurements on high-spin rotational states is discussed.  相似文献   

7.
Alloys of Y1???x Gd x Fe2B y (x = 0, 0.25, 0.5, 0.75 and 1; y = 0, 0.1, 0.15 and 0.2) have been prepared and investigated for structural and magnetic properties. The compounds with x = 0 and 1 are found to form in single phase with C15-type cubic Laves phase structure, while those with x = 0.25, 0.5 and 0.75 are observed to form with small quantities of secondary (Y,Gd)Fe3 phase. The lattice parameters, Curie temperature and the average Fe hyperfine field are found to increase with increasing x. The Gd–Gd and Gd–Fe interactions are attributed to be the main reason for the enhancement of magnetic properties. Boron was found to stabilize the (Y,Gd)Fe2 phase without affecting the magnetic properties.  相似文献   

8.
The crystal structure and magnetic properties of quaternary rare-earth intermetallic borides R3Co29Si4B10 with R=La, Ce, Pr, Nd, Sm, Gd and Dy have been studied by X-ray powder diffraction and magnetization measurements. All compounds crystallize in a tetragonal crystal structure with the space group P4/nmm. Compounds with R=La, Ce, Pr, Nd and Sm are ferromagnets, while ferrimagnetic behavior is observed for R=Gd and Dy. The Curie temperatures vary between 149 K and 210 K. The Curie temperatures in R3Co29Si4B10 (R=Ce, Pr, Nd, Sm, Gd, Dy) compounds are roughly proportional to the de Gennes factors.  相似文献   

9.
Nuclear magnetic resonance measurements of the quadrupolar splittings at rare-earth sites in a series of rare-earth/Fe2, A12 and Zn ordered intermetallics are reported. It is demonstrated that under certain conditions these measurements may be used to determine the value of <Jzfor the 4f electrons with relatively high precision. For the rare-earth/Fe2 compounds studied we find moment reductions of the order of 4% below the free ion values. These results are consistent with those of polarised neutron studies.  相似文献   

10.
We have investigated the lattice dynamics for a number of rare-earth hexaborides based on the superatom model within which the boron octahedron is substituted by one superatom with a mass equal to the mass of six boron atoms. Phenomenological models have been constructed for the acoustic and lowenergy optical phonon modes in RB6 (R = La, Gd, Tb, Dy) compounds. Using DyB6 as an example, we have studied the anomalous softening of longitudinal acoustic phonons in several crystallographic directions, an effect that is also typical of GdB6 and TbB6. The softening of the acoustic branches is shown to be achieved through the introduction of negative interatomic force constants between rare-earth ions. We discuss the structural instability of hexaborides based on 4f elements, the role of valence instability in the lattice dynamics, and the influence of the number of f electrons on the degree of softening of phonon modes.  相似文献   

11.
Magnetic ordering in solid solutions of Ce x (Gd,Pr,Nd,La)1-x Ni is studied by measuring the DC magnetization and the AC susceptibility in the temperature range of 1.8–300 K. The valence state of ceriumions in Ce x (Gd,Pr,Nd,La)1-x Ni quasibinary systems is studied based on X-ray absorption spectra measured at synchrotron-radiation sources in the temperature range of 5–300 K. It is shown that chemical pressure and lowering the temperature help heighten the degree of delocalization of the 4f electrons of cerium in Cex(Gd, Nd, Pr)1-x Ni systems. It is found that the substitution of magnetic ions (Gd, Pr, and Nd) with cerium results in significantly weaker magnetic-ordering suppression than the substitution of these ions with lanthanum at equal concentrations. The obtained data reveal the strong influence of cerium electrons on localized magnetism in the studied compounds. This effect is most probably associated with the contribution of partially delocalized 4f electrons of cerium to the exchange interaction.  相似文献   

12.
The Pr, Sm, Gd, Dy, and Ho ferricyanides have been prepared. These compounds were characterized structurally and magnetically. It has been shown that their magnetic properties are dominantly associated with the electronic structure of trivalent rare-earth ion. The details of the crystal structure were determined using x-ray diffraction technique by means of the Rietveld structure refinement method. Magnetic properties have been investigated by means of vibrating sample magnetometer in the magnetic fields up to 6 T and temperatures from 4.2 to 100 K.  相似文献   

13.
Magnetic and magnetoelastic properties of films of the compounds RCo2 (R-Nd, Pr, Sm, Gd, Tb, Dy, Y) have been investigated. It is shown that the preparation technology, crystal structure of the alloys, atomic number of the rare-earth elements have a large effect on the behavior of the parameters considered.  相似文献   

14.
The structural properties, elastic properties and electronic structures of hexagonal Al3RE intermetallic compounds are calculated by using first-principles calculations based on density functional theory. Since there exists strong on-site Coulomb repulsion between the highly localized 4f electrons of RE atoms, we present a combination of the GGA and the LSDA+U approaches in order to obtain the appropriate results. The GGA calculated lattice constants for the hexagonal Al3RE intermetallic compounds are in good agreement with available experimental values. The results of cohesive energy indicate that these compounds can be stable under absolute zero Kelvin and the stability of Al3Gd is the strongest in all of the hexagonal Al3RE compounds. The densities of states for GGA and LSDA+U approaches are also obtained for the Al3RE intermetallic compounds. The mechanical properties are calculated from the GGA method in this paper. According to the computed single crystal elastic constants, Al3La, Al3Sm and Al3Gd are mechanically unstable, while Al3Ce, Al3Pr and Al3Nd are stable. The polycrystalline elastic modulus and Poisson’s ratio have been deduced by using Voigt-Reuss-Hill (VRH) approximations, and the calculated ratio of bulk modulus to shear modulus indicates that Al3La compound is ductile material, but Al3Ce, Al3Pr, Al3Nd, Al3Sm and Al3Gd are brittle materials.  相似文献   

15.
The dynamics of the crystal lattice of RFe3(BO3)4 (R = Pr, Nd, Sm, Gd, Tb, Dy, and Ho) compounds in the high-symmetry R32 phase has been calculated. Significant changes in spectra of compounds with various rare-earth ions have been obtained only near the edge Λ point of the Brillouin zone (qΛ = 1/3(?2b1 + b2 + b3, where b1, b2, and b3 are the reciprocal lattice vectors) for acoustic oscillation branches. A decrease in the frequency of an acoustic mode at the point Λ has been revealed in all studied compounds. This frequency depends on the type of rare-earth ion and decreases from a compound with Pr to a compound with Ho down to imaginary values. Such a behavior of the frequency of the unstable acoustic mode is in good agreement with experimental data on the dependence of the temperature of the R32 → P3121 structural phase transition on the type of rare-earth ion in ferroborates.  相似文献   

16.
Thermal vibrations of ions in R 2CuO4 crystals (R=La, Pr, Nd, Sm, Eu, Gd) were studied by x-ray diffractometry. A comparative analysis of thermal displacements of the copper and rare-earth ions permitted a conclusion as to the main interactions responsible for the structural state of the CuO2 sheets and of a crystal as a whole. The structural properties were found to correlate with the magnitude of the ionic radius and with the ground state of the rare-earth ions.  相似文献   

17.
The electronic structure and the optical properties of the HoCoSi and ErNiSi compounds are studied. Spin-polarized band calculations are performed in the local electron density approximation corrected for the strong electron–electron interactions in the 4f shell of a rare-earth ion (LSDA + U method [11]). The optical constants are measured by ellipsometry in a wide wavelength range, and the frequency dependences of a number of spectral parameters are determined. The calculated densities of states are used to interpret the structural features of the interband optical conductivities of the intermetallic compounds.  相似文献   

18.
Nuclear quadrupole interactions at Zn sites in the intermetallic compounds RZn (R = Ce, Gd, Tb, Dy) have been investigated by perturbed gamma-gamma angular correlation (PAC) spectroscopy using 111In(111Cd) as probe nuclei. Measurements were carried out in the temperature range of 10–295 K. These compounds exhibit CsCl type cubic structure and while CeZn shows antiferromagnetic behaviour, the compounds GdZn, TbZn, DyZn are ferromagnetic. The results show that the EFG in these compounds is sensitive to the distribution of rare-earth 4f-electron charges.  相似文献   

19.
The elastic properties of rare-earth cobaltites RBaCo4O7 (R = Dy, Ho, Er, Y, Lu) have been investigated experimentally. It has been found that the temperature dependences of the Young’s modulus exhibit significant hysteresis and irreversible effects over a wide range (80–280 K) between the structural and magnetic phase transition temperatures. These effects indicate that the short-range magnetic order in the Co sub-system of the studied rare-earth cobaltites gradually develops below the structural phase transition, when the distortion of the structure relieves the frustration of exchange interactions both in the Kagome lattice and in the triangular lattice of the cobalt subsystem. At the magnetic phase transition temperature, there are weak and smoothed anomalies of the Young’s modulus, which correlate with the low dimensionality and frustration of the exchange interactions in the Co subsystem of the studied rare-earth cobaltites.  相似文献   

20.
Pb(Fe1/2Ta1/2)O3 (PFT) modified by rare-earth (La and Gd) ions has been synthesized in a single phase using a double-stage synthesis (i.e., Columbite) technique. Scanning electron micrographs (SEM) of the pellet samples have shown a significant change in their grain size and uniform distribution of Gd/La at the Fe-sites. The room temperature X-ray structural analysis shows that the reported cubic (or tetragonal) structure of PFT has been distorted to a monoclinic system on substitution of La/Gd at the Fe-site. Detailed studies of dielectric properties of the above compound on La/Gd substitution have shown strong dielectric dispersion at low frequency (i.e. relaxor behavior) with drastic change in transition temperature. Magnetic characterization shows that though the PFT sample displays an antiferromagnetic transition at ∼150 K, the rare-earth ions-substituted samples do not. Furthermore, temperature dependence of magnetization measurements shows that spin glass transition observed in PFT at low temperatures (5–20 K) does not exist in the La and Gd substituted PFT. Doping of Gd in PFT increases the sample magnetization, especially at low temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号