首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reactivity of a hydrido(hydrosilylene)tungsten complex, Cp1(CO)2(H)WSi(H)[C(SiMe3)3] (1), toward oxiranes was investigated. Treatment of 1 with racemic mono-substituted oxiranes with a substituent R (R = Ph, vinyl, tBu, or nBu) at room temperature produced dihydrido(vinyloxysilyl)tungsten complexes, (E)- and/or (Z)-Cp1(CO)2(H)2W{Si(H)(OCHCHR)[C(SiMe3)3]} [(E/Z)-2: R = Ph, (E)-3: R = vinyl, (E)-4: R = tBu, (E/Z)-5: R = nBu] in high yields via regioselective ring-opening of oxiranes. When the substituent R on oxirane was relatively large, (E)-isomers (2, 3, and 4) were obtained predominantly (87–97%), while the substituent was a relatively small nBu group, an approximately 1:1 mixture of (E)- and (Z)-isomers [(E/Z)-5] was obtained. Reaction of 1 with 2,2-dimethyloxirane afforded the corresponding complex, Cp1(CO)2(H)2W{Si(H)(OCHCMe2)[C(SiMe3)3]} (6), quantitatively. A reaction mechanism is also discussed.  相似文献   

2.
The intramolecularly donor-stabilized silenes ArR1SiC(SiMe3)2 (3ad) (3a: R1 = Me; 3b: R1 = t-Bu; 3c: R1 = Ph; 3d: R1 = SiMe3; Ar = 2,6-(Me2NCH2)2C6H3) were prepared by treatment of the (dichloromethyl)oligosilanes (Me3Si)2R1Si–CHCl2 (1ad), with 2,6-bis(dimethylaminomethyl)phenyllithium (molar ratio 1:2). For 3c and 3d, X-ray structural analyses were performed indicating that only one dimethylamino group of the tridentate ligand is coordinated to the electrophilic silene silicon atoms, i.e., the central silicon atoms are tetracoordinated. The N  Si donation leads to pyramidalization at the silene silicon atoms; the configuration at the silene carbon atoms is planar. For a chemical characterization 3a and 3c were treated with water to give the silanols ArR1Si(OH)–CH(SiMe3)2 (5a,c). Studies of the reactions of 3a and 3c with benzaldehyde, 4-chlorobenzaldehyde or 4-methoxybenzaldehyde, respectively, revealed an unexpected reaction path leading to the substituted 2-oxa-1-sila-1,2,3,4-tetrahydronaphthalenes 12a, 12c, 13 and 14. Both 12a and 12c were structurally characterized by X-ray analyses. The formation of these six-membered cyclic compounds, which is discussed in detail, gives support to a dipolar mechanism for the general reaction of silenes with carbonyl derivatives.  相似文献   

3.
Treatment of diphenyl-β-diketiminatoaluminum dihydride, LAlH2 [1, L = {H5C6–NC(Me)}2CH] with neopentyl- or trimethylsilylmethyllithium afforded the corresponding alkylderivatives LAlH(R) [R = CH2–SiMe3 (2), CH2–CMe3 (3)] by the precipitation of lithium hydride. Deprotonation of a methyl group instead of salt elimination occurred by the similar reaction of the more basic alkyllithium compound LiC(SiMe3)3. The reactions of the hydrides 13 with tert-butyl hydrogenperoxide did not yield the expected peroxo derivatives, instead the dialuminoxanes LAl(R)–O–Al(R)L [R = OCMe3 (5), CH2SiMe3 (6), CH2CMe3 (7)] were isolated in high yields. Their Al–O–Al bridges deviated from linearity and had Al–O–Al bond angles of about 155° on average.  相似文献   

4.
The reactions of [(η7-C7H7)Hf(η5-C5H5)] (1b) with the two-electron donor ligands tert-butyl isocyanide (tBuNC), 2,6-dimethylphenyl isocyanide (XyNC), 1,3,4,5-tetramethylimidazolin-2-ylidene (IMe) and trimethylphosphine (PMe3) are reported. The 1:1 complexes [(η7-C7H7)Hf(η5-C5H5)L] (2b, L = tBuNC; 3b, L = XyNC; 4b, L = IMe, 5b, L = PMe3) have been isolated in crystalline form, and their molecular structures have been determined by X-ray diffraction analyses. The stabilities of these hafnium complexes were probed via spectroscopic and theoretical methods, and the results were compared to those previously reported for the corresponding zirconium complexes derived from [(η7-C7H7)Zr(η5-C5H5)] (1a). The X-ray crystal structure of the PMe3 adduct [(η7-C7H7)Zr(η5-C5H5)(PMe3)] (5a) was also established.  相似文献   

5.
《Comptes Rendus Chimie》2007,10(8):721-730
The cationic tetra-coordinated 16 electron complex [Ir(trop2dach)]+OTf (1) where (OTf = CF3SO3) and the neutral amine amido complex [Ir(trop2dach-1H)] (2) were isolated and structurally characterized. The NH function in 1 is easily deprotonated (pKaDMSO = 10.5) to yield the amino amido complex [Ir(trop2dach-1H)] (2), which is deprotonated at pKaDMSO = 19.6 to the anionic di(amido) iridate [Ir(trop2dach-2H)] (3); [(R,R)-top2dach stands for the tetrachelating diamino diolefin ligand (R,R)-N,N′-bis(5H-dibenzo[a,d]cyclohepten-5-yl)-1,2-diaminocyclohexane; (R,R)-top2dach-1H and (R,R)-top2dach-2H indicate the mono and double deprotonated form]. Complex 3 is easily oxidized by 1,4-benzoquinone (BQ) to the neutral iridium aminyl radical complex [Ir(trop2dach-2H)] (4). In combination with BQ as hydrogen acceptor and catalytic amounts of base, 4 serves as catalyst in the highly efficient dehydrogenation of functionalized primary alcohols to the corresponding aldehydes, RCH2OH + BQ  RCHO + H2BQ (H2BQ = catechol). Alcohols like geraniol and retinol are rapidly converted to geranial and retinal, while the conversion of sterically hindered alcohols like lavandulol is slower and the primary product, lavandulal, isomerizes to isolavandulal in a classical base-catalyzed reaction.  相似文献   

6.
The reaction of [Cp1IrCl2]2 (Cp* = η5  C5Me5) with the tridentate 3-thiapentane-1,5-dithiolate ligand, S(CH2CH2S)2 (tpdt), led to the formation of [Cp1Ir(η3  tpdt)] (1) in 81% isolated yield. Subsequent reactions of 1 with [Cp1IrCl2]2 in 2:1 and 1:1 molar equiv ratios resulted in the formation of [Cp1Ir(μ  η2:η3  tpdt)Cp1IrCl][PF6] (2) and [Cp1Irμ  η2:η3  tpdt)Cp1IrCl][Cp1IrCl3] (3) in 86 and 79% yields, respectively, based on 1, whereas the reactions of 1 with [(COD)IrCl]2 (COD = 1,5-cyclooctadiene) in 2:1 and 1:1 molar equiv ratios resulted in the formation of the homo-bimetallic derivatives Cp1Ir(μ  η1:η3  tpdt)(COD)IrCl (4) (92% yield) and [Cp1Ir(μ  η2:η3  tpdt)(COD)Ir] [(COD)IrCl2] (5) (82% yield). Reactions between 1 and [(COD)RhCl]2, yielded the hetero-bimetallic derivatives Cp1Ir(μ  η1:η3  tpdt)(COD)RhCl (6) and [Cp1Ir(μ  η2:η3  tpdt)(COD)Rh][(COD)RhCl2] (7), in 92 and 93% yields, respectively. The reaction of 1 with methyl iodide gave mono-methylated derivative [Cp1Ir(η3-C4H8S3Me)]I (8) (93% yield). All these compounds have been comprehensively characterized.  相似文献   

7.
The reaction of [Cp1IrCl2]2 (Cp* = η5 ? C5Me5) with the tridentate 3-thiapentane-1,5-dithiolate ligand, S(CH2CH2S?)2 (tpdt), led to the formation of [Cp1Ir(η3 ? tpdt)] (1) in 81% isolated yield. Subsequent reactions of 1 with [Cp1IrCl2]2 in 2:1 and 1:1 molar equiv ratios resulted in the formation of [Cp1Ir(μ ? η2:η3 ? tpdt)Cp1IrCl][PF6] (2) and [Cp1Irμ ? η2:η3 ? tpdt)Cp1IrCl][Cp1IrCl3] (3) in 86 and 79% yields, respectively, based on 1, whereas the reactions of 1 with [(COD)IrCl]2 (COD = 1,5-cyclooctadiene) in 2:1 and 1:1 molar equiv ratios resulted in the formation of the homo-bimetallic derivatives Cp1Ir(μ ? η1:η3 ? tpdt)(COD)IrCl (4) (92% yield) and [Cp1Ir(μ ? η2:η3 ? tpdt)(COD)Ir] [(COD)IrCl2] (5) (82% yield). Reactions between 1 and [(COD)RhCl]2, yielded the hetero-bimetallic derivatives Cp1Ir(μ ? η1:η3 ? tpdt)(COD)RhCl (6) and [Cp1Ir(μ ? η2:η3 ? tpdt)(COD)Rh][(COD)RhCl2] (7), in 92 and 93% yields, respectively. The reaction of 1 with methyl iodide gave mono-methylated derivative [Cp1Ir(η3-C4H8S3Me)]I (8) (93% yield). All these compounds have been comprehensively characterized.  相似文献   

8.
Two mesoporous silica-supported chiral Rh and Ru catalysts 5 and 6 with ordered two-dimensional hexagonal mesostructures were prepared by directly postgrafting organometallic complexes RhCl[(R)-MonoPhos(CH2)3Si(OMe)3][(R,R)-DPEN] and RuCl2[(R)-MonoPhos(CH2)3Si(OMe)3][(R,R)-DPEN] (DPEN = 1,2-diphenylethylenediamine) on SBA-15. During the asymmetric hydrogenation of various aromatic ketones under 40 atm H2, both catalysts exhibited high catalytic activities (more than 97% conversions) and moderate enantioselectivities (33–54% ee). Furthermore, the chiral Rh catalyst 5 could be easily recovered and used repetitively five times without significantly affecting its catalytic activity and enantioselectivity. A catalytic comparison of the mesoporous silica-supported chiral Rh catalyst 4 prepared by a postmodification method is also discussed.  相似文献   

9.
The carbosilanes RMe2Si(CH2)xSiH3, [R = 2-Th (1a, 2a), 4-Me-2-Th (3a, 4a), 2-Fu (5a, 6a), 5-Me-2-Fu (7a, 8a); x = 2 and 3], with primary SiH3 end groups undergo a facile dehydropolymerization under ambient conditions (50 °C, 48 h) in presence of Cp2TiCl2/2.2 n-BuLi catalyst to afford the corresponding poly(hydrosilane)s 1–8 bearing carbosilyl side chains appended with thienyl/furyl groups. These have been characterized by GPC, IR, multinuclear (1H, 13C{1H}, 29Si{1H}) NMR, UV and PL spectral studies.  相似文献   

10.
Several multinuclear ferrocenyl–ethynyl complexes of formula [(η5-C5H5)(dppe)MII?CC–(fc)n–CC–MII(dppe)(η5-C5H5)] (fc = ferrocenyl; dppe = Ph2PCH2CH2PPh2; 1: MII = Ru2+, n = 1; 2: MII = Ru2+, n = 2; 3: MII = Ru2+, n = 3; 4: MII = Fe2+, n = 2; 5: MII = Fe2+, n = 3) were studied. Structural determinations of 2 and 4 confirm the ferrocenyl group directly linked to the ethynyl linkage which is linked to the pseudo-octahedral [(η5-C5H5)(dppe)M] metal center. Complexes of 15 undergo sequential reversible oxidation events from 0.0 V to 1.0 V referred to the Ag/AgCl electrode in anhydrous CH2Cl2 solution and the low-potential waves have been assigned to the end-capped metallic centers. The solid-state and solution-state electronic configurations in the resulting oxidation products of [1]+ and [2]2+ were characterized by IR, X-band EPR spectroscopy, and UV–Vis at room temperature and 77 K. In [1]+ and [2]2+, broad intervalence transition band near 1600 nm is assigned to the intervalence transition involving photo-induced electron transfer between the Ru3+ and Fe2+ metal centers, indicating the existence of strong metal-to-metal interaction. Application of Hush’s theoretical analysis of intervalence transition band to determine the nature and magnitude of the electronic coupling between the metal sites in complexes [1]+ and [2]2+ is also reported. Computational calculations reveal that the ferrocenyl–ethynyl-based orbitals do mix significantly with the (η5-C5H5)(dppe)Ru metallic orbitals. It clearly appears from this work that the ferrocenyl–ethynyl spacers strongly contribute in propagating electron delocalization.  相似文献   

11.
Reaction of Cp2LnNHnBu with 1 equiv. of Ph2CCO in toluene affords dimeric complexes [Cp2Ln(OC(CHPh2)NnBu)]2 [Ln = Yb (1), Dy (2)], derived from a formal insertion of the CC bond of the ketene into the N–H bond. Treatment of CpErCl2 with 2 equiv. of LiNHnBu followed by reacting with Ph2CCO affords a rearrangement product [Cp2Er(OC(CHPh2)NnBu)]2 (3). Treatment of [Cp2Ln(μ-Im)]3 (Im = imidazolate) with PhRCCO gives [Cp2Ln(μ-OC(Im)CPhR)]2 [R = Et, Ln = Yb (4); R = Ph, Ln = Yb (5), Er (6)]. In contrast to the previous observations that [Cp2ErNiPr2]2 and [Cp2ErNHEt]2 react with ketenes to give di-insertion products, in the present cases the presence of excess of ketenes has no influence on the final product even with prolonged heating and only monoinsertion products are isolated. All these complexes were characterized by elemental analysis, IR and mass spectroscopies. The structures of complexes 1 and 36 were also determined through X-ray single crystal diffraction analysis.  相似文献   

12.
《Tetrahedron: Asymmetry》2006,17(13):1937-1943
The two enantiomers of [Ru(bpy)3][Mn2(ox)3] (bpy = 2,2′-bipyridine, ox = oxalate), namely [(Δ)-Ru(bpy)3][(Δ)-Mn2(ox)3], (Δ-1) and [(Λ)-Ru(bpy)3][(Λ)-Mn2(ox)3], (Λ-1), were obtained as single crystals using [(Δ)-Ru(bpy)3]2+ and [(Λ)-Ru(bpy)3]2+, respectively, as a chiral templating cation. Their structures were determined by single-crystal X-ray diffraction. The compounds crystallise in the enantiomeric chiral cubic space groups, P4332 (Δ-1) and P4132 (Λ-1), with a = 15.492(2) and 15.507(2) Å, respectively (Z = 4). Both structures include a three-dimensional 10-gon 3-connected (10,3) anionic network wrapped around the [Ru(bpy)3]2+ cations. In both crystalline enantiomers, the resolved ruthenium template cation imposes both the topology and the absolute configuration of all the metal centres. The thermal variation of the magnetic susceptibility, measured on Δ-1 and Λ-1 crystals, reveals an antiferromagnetic coupling between the oxalate-bridged manganese ions in the paramagnetic region characterised by a negative Weiss constant Θ = −35 K. Below TN = 13 K, Δ-1 and Λ-1 exhibit a canted antiferromagnetic order.  相似文献   

13.
The reaction of Ln(CH2SiMe3)3(thf)2 with 1 equiv. of the amine ligand 2,6-iPr2C6H3NH(SiMe3) gave the corresponding amido-ligated rare earth metal bis(alkyl) complexes [2,6-iPr2C6H3N(SiMe3)]Ln(CH2SiMe3)2(thf) (Ln = Sc (1), Y (2), Ho (3), Lu (4)), which represent rare examples of bis(alkyl) rare earth metal complexes bearing a monodentate anionic ancillary ligand. In the case of Gd, a similar reaction gave the bimetallic complex Gd2(μ-CH2SiMe2NC6H3iPr2-2,6)3(thf)3 (5) through intramolecular C–H activation of a methyl group of Me3Si on the amido ligand by Gd–CH2SiMe3 and the subsequent ligand redistribution. Complexes 15 were structurally characterized by X-ray analyses. On treatment with 1 equiv of [Ph3C][B(C6F5)4] in toluene at room temperature, complexes 14 showed high activity for the living polymerization of isoprene. The 1/[Ph3C][B(C6F5)4] system showed high activity also for the polymerization of 1-hexene and styrene.  相似文献   

14.
1H-Siladigermirene R4SiGe2 (2a) and 1H-trigermirene R4Ge3 (2b) (R = SiMetBu2) with a GeGe double bond were synthesized by the reaction of tetrachlorodigermane RGeCl2–GeCl2R with dilithiosilane R2SiLi2 and dilithiogermane R2GeLi2, respectively. The skeletal GeGe double bond of 2a is trans-bent (51.0(2)°) with a bond distance of 2.2429(6) Å. The reaction of both 2a and 2b with CH2Cl2 resulted in the formation of unusual four-membered ring compounds 5a and 5b as a result of a ring expansion reaction. 1H-Trisilirene 7a and 3H-disilagermirene 7b with an SiSi double bond also smoothly reacted with CH2Cl2 to yield the four-membered ring systems 8a and 8b, respectively.  相似文献   

15.
A series of uranium(IV) mixed-ligand amide–halide/pseudohalide complexes (C5Me5)2U[N(SiMe3)2](X) (X = F (1), Cl (2), Br (3), I (4), N3 (5), NCO (6)), (C5Me5)2U(NPh2)(X) (X = Cl (7), N3 (8)), and (C5Me5)2U[N(Ph)(SiMe3)](X) (X = Cl (9), N3 (10)) have been prepared by one electron oxidation of the corresponding uranium(III) amide precursors using either copper halides, silver isocyanate, or triphenylphosphine gold(I)azide. Agostic U?H–C interactions and η3-(N,C,C′) coordination are observed for these complexes in both the solid-state and solution. There is a linear correlation between the chemical shift values of the C5Me5 ligand protons in the 1H NMR spectra and the UIV/UIII reduction potentials of the (C5Me5)2U[N(SiMe3)2](X) complexes, suggesting that there is a common origin, that is overall σ-/π-donation from the ancillary (X) ligand to the metal, contributing to both observables. Optical spectroscopy of the series of complexes 16 is dominated by the (C5Me5)2U[N(SiMe3)2] core, with small variations derived from the identity of the halide/pseudohalide. The considerable π-donating ability of the fluoride ligand is reflected in both the electrochemistry and UV-visible-NIR spectroscopic behavior of the fluoride complex (C5Me5)2U[N(SiMe3)2](F) (1). The syntheses of the new trivalent uranium amide complex, (C5Me5)2U[N(Ph)(SiMe3)](THF), and the two new weakly-coordinating electrolytes, [Pr4N][B{3,5-(CF3)2C6H3}4] and [Pr4N][B(C6F5)4], are also reported.  相似文献   

16.
Reactions of (tBuHN)3PNSiMe3 (1) with the alkyl-metal reagents dimethylzinc, trimethylaluminum and di-n-butylmagnesium yield the monodeprotonated complexes [MeZn{(NtBu)(NSiMe3)P(NHtBu)2}] (2), [Me2Al{(NtBu)(NSiMe3)P(NHtBu)2}] (3) and [Mg{(NtBu)(NSiMe3)P(NHtBu)2}2] (4), respectively. Attempts to further deprotonate complex 2 with n-butyllithium or di-n-butylmagnesium result in nucleophilic displacement of the methylzinc fragment by lithium or magnesium. The two remaining amino protons of 3 are removed by reaction with di-n-butylmagnesium to give a heterobimetallic complex in which the coordination sphere of magnesium is completed by two molecules of THF (5 · 2THF) or one molecule of TMEDA (5 · TMEDA). Reaction of complex 3 with 1 equiv. of n-butyllithium followed by treatment of the product with di-n-butylmagnesium yields the complex {Me2Al[(NtBu)(NSiMe3)P(NtBu)2]MgBu} Li · 4THF (6 · 4THF), the first example of a triply deprotonated complex of 1 containing three different metals. Reaction of complex 5 with iodine results in cleavage of an Al–Me group to give {MeIAl[(NtBu)(NSiMe3)P(NtBu)2Mg]} (7). Complexes 5 · 2THF, 5 · TMEDA, 6 · 4THF and 7 have been characterized in solution by multinuclear (1H, 13C, 31P and 7Li) NMR spectroscopy, while the solid-state structures of 2, 4 and 5 · 2THF have been determined by X-ray crystallography.  相似文献   

17.
A photoresponsive rhodium dinuclear complex having phenyltetramethylcyclopentadienyl (CpPh = η5-C5Me4Ph) and photosensitive dithionite (μ-O2SSO2) ligands, [(CpPhRh)2(μ-CH2)2(μ-O2SSO2)] (1), has been synthesized. The crystal of complex 1 (monoclinic, C2/m (No. 12), a = 24.805(2) Å, b = 29.111(2) Å, c = 10.8475(11) Å, β = 105.9830(7)°, V = 7530.0(12) Å3, Z = 8) consists of two independent molecules, 1-cis and 1-trans, with different arrangement of the CpPh ligands. The flexibility, volume, and shape of the reaction cavities around the dithionite unit of 1-cis and 1-trans in the crystal are discussed. The crystal structures of the precursors of 1, trans-[(CpPhRh)2(μ-Cl)2Cl2] and trans-[(CpPhRh)2(μ-CH2)2Me2], are also reported.  相似文献   

18.
The halide and phosphine free complex [(sIMes)(C5H4N-2-CO2)2RuCHPh] (7) (sIMes = 1,3-dimesitylimidazolidin-2-ylidene) bearing two bidentate 2-pyridinecarboxylato ligands was synthesized from the carbene complex [(sIMes)(PCy3)(Cl)2RuCHPh] (4) and the silver 2-pyridine-carboxylate (8). The molecular structure of the octahedral complex 7 reveals that the two carboxylato functions are coordinated in cis geometry to the ruthenium center. Catalyst 7 exhibits activity in ring-closing metathesis (RCM) reactions after addition of a cocatalyst (HCl) in dichloromethane as well as in methanol solution.  相似文献   

19.
The steric and electronic effects of bulky aryl and silyl groups on the Si–Si triple bonding in RSiSiR and the short Ga–Ga distance in Na2[RGaGaR] are investigated by density functional calculations. As typical bulky groups, Tbt = C6H2-2,4,6-{CH(SiMe3)2}3, Ar′ = C6H3-2,6-(C6H3-2,6-iPr2)2, Ar1 = C6H3-2,6-(C6H2-2,4,6-iPr3)2, SiMe(SitBu3)2, and SiiPrDis2 (Dis = CH(SiMe3)2) are investigated and characterized. The importance of large basis sets is emphasized for density functional calculations.  相似文献   

20.
The synthesis of new ruthenium-based catalysts applicable for both homogeneous and heterogeneous metathesis is described. Starting from the Hoveyda-Grubbs first generation (1) and the Hoveyda-Grubbs second generation (2) catalysts the homogeneous catalysts [RuCl((RO)3Si–C3H6–N(R′)–CO–C3F6–COO)(CH–o-O–iPr–C6H4)(SIMes)] (4: R = Et, R′ = H; 5: R = R′ = Me) (SIMes = 1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene) were prepared by substitution of one chloride ligand with trialkoxysilyl functionalized silver carboxylates (RO)3Si–C3H6–N(R′)–CO–C3F6–COOAg (3a: R = Et, R′ = H; 3b: R = R′ = Me). These homogeneous ruthenium-species are among a few known examples with mixed anionic ligands. Exchange of both chloride ligands afforded the catalysts [Ru((RO)3Si–C3H6–N(R′)–CO–C3F6–COO)(CH–o-O–iPr–C6H4)(SIMes)] (9: R = Et, R′ = H; 11: R = R′ = Me) and [Ru((RO)3Si–C3H6–N(R′)–CO–C3F6–COO)(CH–o-O–iPr–C6H4)(PCy3)] (8: R = Et, R′ = H; 10: R = R′ = Me). The reactivity of the new complexes was tested in homogeneous ring-closing metathesis (RCM) of N,N-diallyl-p-toluenesulfonamide and TONs of up to 5000 were achieved. Heterogeneous catalysts were obtained by reaction of 4, 5 and 811 with silica gel (SG-60). The resultant supported catalysts 4a, 5a, 8a11a showed reduced activity compared to their homogenous analogues, but rival the activity of similar heterogeneous systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号