首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Impedance and admittance matrices of a piezoelectric annular actuator with segmented electrodes are presented for the analysis of the disk-type piezoelectric ultrasonic motors (USM). Equations of motion and the conjugate parameters for the impedance and admittance matrices are derived using the variational principle. In the derivation, the electric field in the piezoelectric layer is assumed to be constant over the area covered by a particular electrode, and the effects of both shear deformation and rotary inertia are taken into account. The resonance and antiresonance frequencies and the vibrating modes are calculated for the various resonance modes and boundary conditions, and the results are compared with those by the three-dimensional finite element methods. They are in excellent agreement with each other. It is expected that the derived impedance matrix can be effectively applied to the analysis and the design of the USM.  相似文献   

2.
Acoustic attenuation of hybrid silencers   总被引:1,自引:0,他引:1  
The acoustic attenuation of a single-pass, perforated concentric silencer filled with continuous strand fibers is investigated first theoretically and experimentally. The study is then extended to a specific type of hybrid silencer that consists of two single-pass perforated filling chambers combined with a Helmholtz resonator. One-dimensional analytical and three-dimensional boundary element methods (BEM) are employed for the predictions of the acoustic attenuation in the absence of mean flow. To account for the wave propagation in absorbing fiber, the complex-valued characteristic impedance and wave number are measured. The perforation impedance facing the fiber is also presented in terms of complex-valued characteristic impedance and wave number. The effects of outer chamber diameter and the fiber density are examined. Comparisons of predictions with the experiments illustrate the need for multi-dimensional analysis at higher frequencies, while the one-dimensional treatment provides a reasonable accuracy at lower frequencies, as expected. The study also shows a significant improvement in the acoustic attenuation of the silencer due to fiber absorption. Multi-dimensional BEM predictions of a hybrid silencer demonstrate that a reactive component such as a Helmholtz resonator can improve transmission loss at low frequencies and a higher duct porosity may be effective at higher frequencies.  相似文献   

3.
This paper presents an analytical model for acoustic transmission characteristics of a cylindrical cavity system representing the acoustic resonance conditions of a Korean bell. The cylindrical cavity system consists of an internal cavity, a gap, an auxiliary cavity, and a rigid base. Since the internal cavity is connected to the external field through a gap, determination of the acoustic transmission characteristics becomes a coupling problem between the internal cavity and external field. The acoustic field of the internal cavity is considered by expanding the solution method of the mixed boundary problem, and the external field is addressed by modifying the radiation impedance model of a finite cylinder. The analytical model is validated by comparison with both experiment and a boundary element method. Using the analytical model, the resonance conditions are determined to maximize the resonance effect. Thus, the resonance frequencies of the bell cavity system are investigated according to the gap size and auxiliary cavity depth. By adjusting gap size or auxiliary cavity depth, the cavity resonance frequency is tuned to resonate partial tones of the bell sound. Finally, the optimal combination of gap size and auxiliary cavity depth is determined.  相似文献   

4.
A numerical method for sound propagation of higher-order cross-sectional modes in a duct of arbitrary cross-section and boundary conditions with nonzero, complex acoustic admittance has been considered. This method assumes that the cross-section of the duct is uniform and that the duct is of a considerable length so that the longitudinal modes can be neglected. The problem is reduced to a two-dimensional (2D) finite element (FE) solution, from which a set of cross-sectional eigen-values and eigen-functions are determined. This result is used to obtain the modal frequencies, velocities and the attenuation coefficients. The 2D FE solution is then extended to three-dimensional via the normal mode decomposition technique. The numerical solution is validated against experimental data for sound propagation in a pipe with inner walls partially covered by coarse sand or granulated rubber. The values of the eigen-frequencies calculated from the proposed numerical model are validated against those predicted by the standard analytical solution for both a circular and rectangular pipe with rigid walls. It is shown that the considered numerical method is useful for predicting the sound pressure distribution, attenuation, and eigen-frequencies in a duct with acoustically nonrigid boundary conditions. The purpose of this work is to pave the way for the development of an efficient inverse problem solution for the remote characterization of the acoustic boundary conditions in natural and artificial waveguides.  相似文献   

5.
范一良  季振林 《声学学报》2022,47(5):675-685
为计算和分析具有复杂结构的阻抗复合式消声器的宽频消声性能,建立了一种高效声学有限元方法,给出了不同边界条件下的边界积分处理细节,得到有限元全局系数矩阵表达式,设计出计算程序框架以实现这些算法,其求解规模和计算速度与商业软件相比有优势。为计算阻抗复合式消声器的传递损失,通过阻抗管测量和数据拟合得到了吸声材料声学特性的经验公式。计算和测量了两通穿孔阻抗复合式消声器的传递损失,二者良好的吻合验证了声学有限元方法和计算程序的正确性。研究表明,插管长度影响消声器在中高频段的消声特性,右侧隔板上穿孔会消除共振峰,中高频消声性能随着出口管穿孔率的增加而提升。   相似文献   

6.
Artificial viscosity can be combined with a higher-order discontinuous Galerkin finite element discretization to resolve a shock layer within a single cell. However, when a non-smooth artificial viscosity model is employed with an otherwise higher-order approximation, element-to-element variations induce oscillations in state gradients and pollute the downstream flow. To alleviate these difficulties, this work proposes a higher-order, state-based artificial viscosity with an associated governing partial differential equation (PDE). In the governing PDE, a shock indicator acts as a forcing term while grid-based diffusion is added to smooth the resulting artificial viscosity. When applied to heat transfer prediction on unstructured meshes in hypersonic flows, the PDE-based artificial viscosity is less susceptible to errors introduced by grid edges oblique to captured shocks and boundary layers, thereby enabling accurate heat transfer predictions.  相似文献   

7.
The effect of perforation impedance on the acoustic behavior of reactive and dissipative silencers is investigated using experimental and computational approaches. The boundary element method (BEM) is applied for the prediction of transmission loss of silencers with different perforation geometries. The variations are considered in the porosity (8.4 and 25.7%) and hole diameter (0.249 and 0.498 cm) of perforations for both reactive and dissipative silencers, as well as the fiber filling density (100 and 200 kg/m3) for the latter. The acoustic impedance for a number of perforations in contact with air alone and fibrous material has been incorporated into the predictions, which are then compared with the measured transmission loss using an impedance tube setup. The results demonstrate the significance of the accuracy of the perforation impedance in the predictions for both reactive and dissipative silencers.  相似文献   

8.
In earlier studies, one has successfully developed three different source methods (SSM, similar source method; IPSM, internal parallel source method; ISM, internal source method) to estimate radiation and scattering sound fields. All these methods are estimations of exterior sound fields. In the present study, the similar source method is modified to estimate an interior sound field. The modification is to move the imaginary sources outside the boundary surface. In addition, general boundary conditions in terms of acoustic admittance or impedance are considered by introducing the suitable least square error functions. Finally, a two-dimensional interior sound field with alternative boundary conditions is evaluated to simulate sound fields inside a car. The results are in agreement with those of boundary integral method.  相似文献   

9.
A Fourier series method is proposed for the acoustic analysis of a rectangular cavity with impedance boundary conditions arbitrarily specified on any of the walls. The sound pressure is expressed as the combination of a three-dimensional Fourier cosine series and six supplementary two-dimensional expansions introduced to ensure (accelerate) the uniform and absolute convergence (rate) of the series representation in the cavity including the boundary surfaces. The expansion coefficients are determined using the Rayleigh-Ritz method. Since the pressure field is constructed adequately smooth throughout the entire solution domain, the Rayleigh-Ritz solution is mathematically equivalent to what is obtained from a strong formulation based on directly solving the governing equations and the boundary conditions. To unify the treatments of arbitrary nonuniform impedance boundary conditions, the impedance distribution function on each specified surface is invariantly expressed as a double Fourier series expansion so that all the relevant integrals can be calculated analytically. The modal parameters for the acoustic cavity can be simultaneously obtained from solving a standard matrix eigenvalue problem instead of iteratively solving a nonlinear transcendental equation as in the existing methods. Several numerical examples are presented to demonstrate the effectiveness and reliability of the current method for various impedance boundary conditions, including nonuniform impedance distributions.  相似文献   

10.
This paper proposes the singular boundary method (SBM) in conjunction with Burton and Miller?s formulation for acoustic radiation and scattering. The SBM is a strong-form collocation boundary discretization technique using the singular fundamental solutions, which is mathematically simple, easy-to-program, meshless and introduces the concept of source intensity factors (SIFs) to eliminate the singularities of the fundamental solutions. Therefore, it avoids singular numerical integrals in the boundary element method (BEM) and circumvents the troublesome placement of the fictitious boundary in the method of fundamental solutions (MFS). In the present method, we derive the SIFs of exterior Helmholtz equation by means of the SIFs of exterior Laplace equation owing to the same order of singularities between the Laplace and Helmholtz fundamental solutions. In conjunction with the Burton–Miller formulation, the SBM enhances the quality of the solution, particularly in the vicinity of the corresponding interior eigenfrequencies. Numerical illustrations demonstrate efficiency and accuracy of the present scheme on some benchmark examples under 2D and 3D unbounded domains in comparison with the analytical solutions, the boundary element solutions and Dirichlet-to-Neumann finite element solutions.  相似文献   

11.
Here considered is the problem of transient electromagnetic scattering from overfilled cavities embedded in an impedance ground plane. An artificial boundary condition is introduced on a semicircle enclosing the cavity that couples the fields from the infinite exterior domain to those fields inside. A Green's function solution is obtained for the exterior domain, while the interior problem is solved using finite element method. Well-posedness of the associated variational formulation is achieved and convergence and stability of the numerical scheme are confirmed. Numerical experiments show the accuracy and robustness of the method.  相似文献   

12.
A conjugated infinite element method for half-space acoustic problems   总被引:1,自引:0,他引:1  
Many acoustic problems (especially in environmental acoustics) involve half-space domains bounded by a plane subjected to normal admittance boundary conditions. In the "low" frequency domain, the numerical treatment of such problems usually relies on boundary element methods based on a particular Green's function suited for the half-(admittance) plane. In the present paper, an alternative hybrid finite/infinite element scheme is proposed. The method relies on a direct treatment of nonhomogeneous boundary conditions along infinite element edges (or faces). The procedure is validated through comparisons with an available reference solution.  相似文献   

13.
A theoretical study of two types of continuous systems with a general form of compliant boundary conditions is presented. The systems considered are elastic beams and circular plates with elastic damped edge constraints. Beam studies are restricted to those with identical boundary conditions at each end. The method of solution consists of formulating the edge condition of the system in terms of the impedance of the compliant boundary material and of using classical solution techniques to solve the equations of motion. The result of matching the boundary conditions of the system with constraining conditions is the system frequency equation in terms of the constraint impedances.A discussion is presented giving the influence of the compliant material on the vibration of the structure. The models give numerically the effect of elasticity and damping of the supports on the resonant frequencies of the systems. Parameters are obtained which indicate when one may assume simply supported or clamped boundaries for the actual case of elastic damped constraints without introducing large errors in the natural frequencies.  相似文献   

14.
A modal expansion method is used to model a cylindrical enclosure excited by an external plane wave. A set of distributed vibration absorbers (DVAs) and Helmholtz resonators (HRs) are applied to the structure to control the interior acoustic levels. Using an impedance matching method, the structure, the acoustic cavity, and the noise reduction devices are fully coupled to yield an analytical formulation of the structural kinetic energy and acoustic potential energy of a treated cylindrical cavity. Lightweight DVAs and small HRs tuned to the natural frequencies of the targeted structural and acoustic modes, respectively, result in significant acoustic and structural attenuation when the devices are optimally damped. Simulations show that significant interior noise reduction can only be achieved by adding damping to both structural and acoustic modes, which are resonant in the frequency bandwidth of interest. In order to be independent of the azimuth angle of the excitation and to avoid unwanted modal interactions, the devices are distributed evenly around the cylinder in rings. This treatment can only achieve good performance if the structure and the acoustic cavity are lightly damped.  相似文献   

15.
An approach to calculating resonance frequencies and acoustic characteristics of ultrasonic multilayer liquid chambers bordering an air or liquid half-space and loaded to a piezoelectric emitter is proposed. The assumption on the validity of plane motion is accepted. The approach allows for obtaining comprehensive data on physical processes in the chamber. The equation relating electrical admittance of a piezoplate with input impedance of the acoustic load is derived. An unloaded emitter and an emitter loaded to acoustic resistance with constant and frequency-dependent impedances are considered as examples.  相似文献   

16.
Ground conditions affect the propagation of outdoor sound and vibration. This paper focuses on the interaction between air pressure and porous ground at low frequencies- where mechanisms other than the rigid porous effects used in locally reacting models may be important. A 2-D analytical model has been developed in this study for the calculation of acoustic and acousto-seismic admittances in a multi-layered poro-elastic ground. The model can be used as a prediction tool both for the ground effect on the sound and the generation of ground vibration by the sound. The modelled acoustic admittance is validated successfully against established rigid frame admittance models over a frequency range of 1 Hz-3 kHz. Moreover, the acousto-seismic impedance is verified against full scale airblast field test data measured during the Norwegian Trials full scale field test program. For certain ground types, the predicted acoustic admittance illustrates a different behaviour compared with predictions from the traditional rigid frame acoustic impedance models. This emphasises the importance of including a deformable frame in the model to obtain realistic results for these conditions.  相似文献   

17.
Helmholtz resonator lined with absorbing material   总被引:1,自引:0,他引:1  
A closed-form, two-dimensional analytical solution is developed to investigate the acoustic performance of a concentric circular Helmholtz resonator lined with fibrous material. The effect of density and the thickness of the fibrous material in the cavity is examined on the resonance frequency and the transmission loss. With the expressions for the eigenvalue and eigenfunction in the cavity, the transmission loss is obtained for a piston-driven model by applying a pressure/velocity matching technique. The results from the analytical methods are compared to the numerical predictions from a three-dimensional boundary element method and the experimental data obtained from an impedance tube setup. It is shown that the acoustic performance of a Helmholtz resonator may be modified considerably by the density and thickness of the fibrous material without changing the cavity dimensions.  相似文献   

18.
A new approach for measuring acoustic impedance is developed by using artificial neural network (ANN) algorithm. Instead of using impedance tube, a rectangular room or a box is simulated with known boundary conditions at some boundaries and an unknown acoustic impedance at one side of the wall. A training data basis for the ANN algorithm is evaluated by similar source method which was developed earlier by Too and Su [Too G-PJ, Su T-K. Estimation of scattering sound field via nearfield measurement by source methods. Appl Acoust. 1999;58:261-81 (SCI) (EI)] for the estimation of interior and exterior sound field. The training data basis is constructed by evaluating of acoustic pressure at a field point with various acoustic impedance conditions at one side of the wall. Then, the inversion for unknown acoustic impedance of a wall is performed by measuring several field data and substituting these data into ANN algorithm. The simulation result indicates that the prediction of acoustic impedance is very accurate with error percentage under 1%. In addition, one field point measurement in the present approach for acoustic impedance provides more straightforward and easier evaluation than that in the two point measurement of impedance tube.  相似文献   

19.
The paper addresses the handling of frequency-dependent, local admittance boundary conditions in acoustic transient finite/infinite-element models. The proposed approach avoids the evaluation of a convolution integral along the related boundary. Based on a similar technique developed in an aeroacoustic/finite difference context, the spatially local boundary condition is rewritten in a discrete form that involves normal accelerations and pressure time derivatives at the current time step and few steps before. The incorporation of such a discrete (in time) boundary condition in a finite/infinite-element context is addressed. The infinite-element scheme selected for that purpose relies on the conjugated Astley-Leis formulation. Implementation aspects cover the handling of frequency-dependent boundary conditions along both finite- and infinite-element edges. Numerical examples (waveguide, single source in a half-space bounded by an impedance plane, diffraction by an acoustically treated screen) are presented in order to demonstrate the efficiency of the proposed approach.  相似文献   

20.
The impedance method is used to determine the electric impedance of a resonator. The amplitude-frequency response of a one-dimensional liquid-filled ultrasonic resonator is calculated by directly solving the wave equations and piezoelectric effect equations under the corresponding boundary conditions. An analysis of the amplitude-frequency response shows that the simple analytical expression obtained from the aforementioned solution is in good agreement with experimental data. An anomalous variation of the electric current in the radiating piezoelectric plate versus the excitation frequency is theoretically revealed near the high-Q resonance peaks. This effect is confirmed experimentally. It gives rise to errors in the measured absorption coefficient and multiply broadens the resonance peaks when the measurements are performed near the resonance frequencies of the piezoelectric plates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号