首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-quality ZnO films were grown on Si(1 0 0) substrates with low-temperature (LT) ZnO buffer layers by an electron cyclotron resonance (ECR)-assisted molecular-beam epitaxy (MBE). In order to investigate the optimized buffer layer temperature, ZnO buffer layers of about 1.1 μm were grown at different growth temperatures of 350, 450 and 550 °C, followed by identical high-temperature (HT) ZnO films with the thickness of 0.7 μm at 550 °C. A ZnO buffer layer with a growth temperature of 450 °C (450 °C-buffer sample) was found to greatly enhance the crystalline quality of the top ZnO film compared to others. The root mean square (RMS) roughness (3.3 nm) of its surface is the smallest, compared to the 350 °C-buffer sample (6.7 nm), the 550 °C-buffer sample (7.4 nm), and the sample without a buffer layer (6.8 nm). X-ray diffraction (XRD), photoluminescence (PL) and Raman scattering measurements were carried out on these samples at room temperature (RT) in order to characterize the crystalline quality of ZnO films. The preferential c-axis orientations of (0 0 2) ZnO were observed in the XRD spectra. The full-width at half-maximum (FWHM) value of the 450 °C-buffer sample was the narrowest as 0.209°, which indicated that the ZnO film with a buffer layer grown at this temperature was better for the subsequent ZnO growth at elevated temperature of 550 °C. Consistent with these results, the 450 °C-buffer sample exhibits the highest intensity and the smallest FWHM (130 meV) of the ultraviolet (UV) emission at 375 nm in the PL spectrum. The ZnO characteristic peak at 438.6 cm−1 was found in Raman scattering spectra for all films with buffers, which is corresponding to the E2 mode.  相似文献   

2.
In this paper, we present a three-dimensional nanorod solar cell design. As the backbone of the nanorod device, density-controlled zinc oxide (ZnO) nanorods were synthesized by a simple aqueous solution growth technique at 80 °C on ZnO thin film pre-coated glass substrate. The as-prepared ZnO nanorods were coated by an amorphous hydrogenated silicon (a-Si:H) light absorber layer to form a nanorod solar cell. The light management, current–voltage characteristics and corresponding external quantum efficiency of the solar cells were investigated. An energy conversion efficiency of 3.9% was achieved for the nanorod solar cells with an a-Si:H absorber layer thickness of 75 nm, which is significantly higher than the 2.6% and the 3.0% obtained for cells with the same a-Si:H absorber layer thickness on planar ZnO and on textured SnO2:F counterparts, respectively. A short-circuit current density of 11.6 mA/cm2 and correspondingly, a broad external quantum efficiency profile were achieved for the nanorod device. An absorbed light fraction higher than 80% in the wavelength range of 375–675 nm was also demonstrated for the nanorod solar cells, including a peak value of ~ 90% at 520–530 nm.  相似文献   

3.
《Journal of Non》2006,352(38-39):4088-4092
In this paper, amorphous ZnO thin films were obtained by direct UV irradiation of β-diketonate Zn(II) precursor complexes spin-coated on Si(1 0 0) and fused silica substrates. ZnO films were characterized by means of XPS, X-ray diffraction (XRD) and Atomic Force Microscopy (AFM). These analyses revealed that as-deposited films are amorphous and have a rougher surface than thermally treated films. Optical characterization of the films showed that these are highly transparent in the visible spectrum with an average transmittance of up to 95% over 400 nm, and an optical band-gap energy of 3.21 eV for an as-deposited film, and 3.27 eV for a film annealed at 800 °C. Low resistivity values were obtained for the ZnO films (1.0 × 10−2 Ω cm) as determined by Van der Pauw four-point probe method.  相似文献   

4.
Amorphous tungsten-doped In2O3 (IWO) films were deposited from a metallic target by dc magnetron sputtering at room temperature. Both oxygen partial pressure and sputtering power have significant effects on the electrical and optical properties of the films. The as-deposited IWO films with the optimum resistivity of 5.8 × 10?4 Ω·cm and the average optical transmittance of 92.3% from 400 to 700 nm were obtained at a W content of 1 wt%. The average transmittance in the near infrared region (700–2500 nm) is 84.6–92.8% for amorphous IWO prepared under varied oxygen partial pressure. The mobility of the IWO films reaches its highest value of 30.3 cm2 V?1 s?1 with the carrier concentration of 1.6 × 1020 cm?3, confirming their potential application as transparent conductive oxide films in various flexible devices.  相似文献   

5.
Amorphous silicon quantum dots (Si-QDs) self-aggregated in silicon-rich silicon carbide are synthesized by growing with plasma-enhanced chemical vapor deposition on (100)-oriented Si substrate. Under the environment of Argon (Ar)-diluted Silane (SiH4) and pure methane (CH4), the substrate temperature and RF power are set as 350 °C and 120 W, respectively, to provide the Si-rich SiC with changing fluence ratio (R = [CH4 ]/[SiH4] + [CH4]). By tuning the fluence ratio from 50% to 70%, the composition ratio x of Si-rich Si1 ? xCx film is varied from 0.27 to 0.34 as characterized by X-ray photoelectron spectroscopy (XPS), which reveals the component of Si2p decreasing from 66.3 to 59.5%, and the component of C1s increasing from 23.9% to 31% to confirm the formation of Si-rich SiC matrix. Annealing of the SiC sample from 650 °C to 1050 °C at 200 °C increment for 30 min induces the very tiny shift on the wavenumber of the crystalline Si (c-Si) related peak due to the precipitation of Si-QDs within the SiC matrix, and the Raman scattering spectra indicate a broadened Raman peak ranging from 410 to 520 cm? 1 related to the amorphous Si accompanied with the significant enhancement for SiC bond related peak at 980 cm? 1. From the high resolution transmission electron microscopy images, the critical temperature for Si-QD precipitation is found to be 850 °C. The self-assembly of the crystallized Si-QDs with the size of 3 ± 0.5 nm and the volume density of (3 ± 1) × 1018 (#/cm3) in Si-rich SiC film with R = 70% are observed after annealing at higher temperature.  相似文献   

6.
Nanoindentation studies on Ge15Te85 ? xInx glasses indicate that the hardness and elastic modulus of these glasses increase with indium concentration. While a pronounced plateau is seen in the elastic modulus in the composition range 3  x  7, the hardness exhibits a change in slope at compositions x = 3 and x = 7. Also, the density exhibits a broad maximum in this composition range. The observed changes in the mechanical properties and density are clearly associated with the thermally reversing window in Ge15Te85 ? xInx glasses in the composition range 3  x  7. In addition, a local minimum is seen in density and hardness around x = 9, the chemical threshold of the system. Further, micro-Raman studies reveal that as-quenched Ge15Te85 ? xInx samples exhibit two prominent peaks, at 123 cm? 1 and 155 cm? 1. In thermally annealed samples, the peaks at 120 cm? 1 and 140 cm? 1, which are due to crystalline Te, emerge as the strongest peaks. The Raman spectra of polished samples are similar to those of annealed samples, with strong peaks at 123 cm? 1 and 141 cm? 1. The spectra of lightly polished samples outside the thermally reversing window resemble those of thermally annealed samples; however, the spectra of glasses with compositions in the thermally reversing window resemble those of as-quenched samples. This observation confirms the earlier idea that compositions in the thermally reversing window are non-aging and are more stable.  相似文献   

7.
Doris Ehrt 《Journal of Non》2008,354(2-9):546-552
Glasses with 55–60 mol% SnO and 40–45 mol% P2O5 have shown extremely large differences in the chemical and thermal properties depending on the temperature at which they were melted. Glasses prepared at low melting temperature, 450–550 °C, had low Tg, 150–200 °C, and low chemical stability. Glasses prepared at high melting temperature, 800–1200 °C, had much higher Tg, 250–300 °C, and much higher chemical stability. No significant differences were found by 119Sn Mössbauer and 31P Nuclear Magnetic Resonance spectroscopy. Large differences in the OH-content could be detected as the reason by infrared absorption spectroscopy, thermal analyses, and 1H Nuclear Magnetic Resonance spectroscopy. In samples with low Tg, a broad OH – vibration band around 3000 nm with an absorption intensity >20 cm?1, bands at 2140 nm with intensity ~5 cm?1, at 2038 nm with intensity ~2.7 cm?1, and at 1564 nm with intensity ~0.4 cm?1 were measured. These samples have shown a mass loss of 3–4 wt% by thermal gravimetric analyses under argon in the temperature range 400–1000 °C. No mass loss and only one broad OH-band with a maximum at 3150 nm and low absorption intensity <4 cm?1 could be detected in samples melted at high temperature, 1000–1200 °C, which have much higher Tg, ~300 °C, and much higher chemical stability.  相似文献   

8.
《Journal of Non》2007,353(13-15):1437-1440
Surface morphology and roughness of amorphous spin-coated As–S–Se chalcogenide thin films were determined using atomic force microscopy. Prepared films were coated from butylamine solutions with thicknesses d  100 nm and then annealed in a vacuum furnace at 45 °C and 90 °C for 1 h for their stabilization. The root mean square surface roughness analysis of surfaces of as-deposited spin-coated As–S–Se films indicated a very smooth film surface (with Rq values 0.42–0.45 ± 0.2 nm depending on composition). The nanoscale images of as-deposited films confirmed that surface of the films is created by domains with dimensions 20–40 nm, which corresponds to diameters of clusters found in solutions. The domain character of film surfaces gradually disappeared with increasing annealing temperature while the solvent was removed from the films. Middle-infrared transmission spectra recorded a decrease of intensities of vibration bands connected to N–H (at 3367 and 3292 cm−1) and C–H (at 2965, 2935 and 2880 cm−1) stretching vibrations. Temperature regions of solvent evaporation T = 60–90 °C and glass transformation temperatures Tg = 135–150 °C of spin-coated As–S–Se thin films were determined using a modulated differential scanning calorimetry.  相似文献   

9.
Upon excitation at 808 nm laser diode, an intense 1.47 μm infrared fluorescence has been observed with a broad full width at half maximum (FWHM) of about 124 nm for the Tm3+-doped TeO2-K2O-La2O3 glass. The Judd–Ofelt parameters found for this glass are: Ω2 = 5.26 × 10?20 cm2, Ω4 = 1.57 × 10?20 cm2 and Ω6 = 1.44 × 10?20 cm2. The calculated emission cross-sections of the 1.47 μm transition are 3.57 × 10?21 cm2, respectively. It is noted that the gain bandwidth, σe × FWHM, of the glass is about 440 × 10?28 cm3, which is significantly higher than that in ZBLAN and Gallate glasses, a high gain of 35.5 dB at 1470 nm can be obtained in a TKL glass fiber. TeO2-R2O (R = Li, Na, K)-La2O3 glasses has been considered to be more useful as a host for broadband optical fiber amplifier.  相似文献   

10.
Tin dioxide thin films were prepared by pulsed laser deposition techniques on clean glass substrates, and the thin films were then annealed for 30 min from 50 to 550 °C with a step of 50 °C, respectively. The influence of the annealing temperature on the microstructural and morphological properties of the tin dioxide thin films was investigated using X-ray diffraction, scanning electron microscopy, transmission electron microscopy and selected area electron diffraction. The experimental results showed that the amorphous microstructure almost transformed into a polycrystalline tin dioxide phase exhibiting a preferred orientation related to the (1 1 0), (1 0 1) and (2 1 1) crystal planes with increased temperatures. The thin film annealed at 200 °C demonstrated the best crystalline properties, viz. optimum growth conditions. However, the thin film annealed at 100 °C revealed the minimum average root-mean-square roughness of 20.6 nm with average grain size of 26.6 nm. These findings indicate that the annealing temperature is very important parameter to determining the thin film quality, which involves the phase formation, microstructure and preferred orientation of the thin films.  相似文献   

11.
The experimental results on silica aerogels with super hydrophobic property are reported. Silica alcogels were prepared via a two-step acid/base process by keeping the molar ratio of tetraethyoxysiliane (TEOS), ethanol (EtOH), water (H2O), hydrochloric acid (HCl) and ammonia (NH4OH) constant at 1:6:8:1.0 × 10?3:1.1 × 10?2, respectively, and varying the molar ratio of N,N-dimethylformamide (DMF)/TEOS (G) from 0 to 1.2. After two aging treatment steps, they were modified by isopropyl alcohol (IPA)/trimethylchlorosilane (TMCS)/n-hexane solution at 60 °C. It was found that G value at 0.8 resulted in low density (~0.2 g cm?3) and the minimum volume shrinkage (~6%), with the total water adsorption ratio ~5.1% when exposed to water for 3 months and the contact angle θ  178°. Besides, the aerogels (G = 0.8) had higher volume fractal dimension (~1.8), which indicted that it possessed better connectivity and more uniform particle sizes.  相似文献   

12.
《Journal of Non》2006,352(9-20):1250-1254
Very good electronic properties of hot-wire CVD a-Si,Ge:H alloys have been established by junction capacitance methods. The samples were deposited using a tantalum filament maintained at about 1800 °C instead of the usual 2000 °C tungsten filament process. Urbach energies below 45 meV were found, as well as annealed defect densities below 1016 cm−3, for Ge fractions up to 30 at.%. However, samples with 1019 cm−3 levels of oxygen exhibited much broader Urbach energies and higher defect densities. Light induced degradation was examined in detail for one a-Si,Ge:H alloy sample and compared to the behavior of PECVD grown a-Si:H alloys of similar optical gap.  相似文献   

13.
《Journal of Non》2006,352(23-25):2335-2338
This paper reports the structural, electrical and optical properties of Yttrium doped zinc oxide (YZO) thin films deposited on Corning (7059) glass substrates by spin coating technique. A precursor solution of ZnO, 0.2 M in concentration was prepared from zinc acetate dissolved in anhydrous ethanol with diethanolamine as a sol gel stabilizer. Yttrium nitrate hexahydrate (Y2NO3 · 6H2O) was used as the dopant (3 wt%) in the present study. The films of different thickness in the range (200–500 nm) were prepared. The films were annealed in air at 450 °C for 1 h. It was observed that the c-axis orientation improves and the grain size increases as is indicated by an increase in intensity of the (0 0 2) peak and the decrease in the FWHM with the increase of film thickness. The resistivity decreased sharply from 2.8 × 10−2 to 5.8 × 10−3 Ω-cm as the thickness increased from 200 to 500 nm. However, the average transmittance decreased from 87% to 82.6% as the film thickness increased to 500 nm. The lowest sheet resistance of ∼120 Ω/□ was obtained for the 500 nm thick film.  相似文献   

14.
《Journal of Crystal Growth》2003,247(3-4):393-400
Using a highly conductive ZnO(ZnAl2O4) ceramic target, c-axis-oriented transparent conductive ZnO:Al2O3 (ZAO) thin films were prepared on glass sheet substrates by direct current planar magnetron sputtering. The structural, electrical and optical properties of the films (deposited at different temperatures and annealed at 400°C in vacuum) were characterized with several techniques. The experimental results show that the electrical resistivity of films deposited at 320°C is 2.67×10−4 Ω cm and can be further reduced to as low as 1.5×10−4 Ω cm by annealing at 400°C for 2 h in a vacuum pressure of 10−5 Torr. ZAO thin films deposited at room temperature have flaky crystallites with an average grain size of ∼100 nm; however those deposited at 320°C have tetrahedron grains with an average grain size of ∼150 nm. By increasing the deposition temperature or the post-deposition vacuum annealing, the carrier concentration of ZAO thin films increases, and the absorption edge in the transmission spectra shifts toward the shorter wavelength side (blue shift).  相似文献   

15.
Fast ion conducting (FIC) phosphate glasses and glass ceramic composites have gained considerable importance due to their potential applications in the fabrication of solid-state batteries and other electrochemical devices. We, therefore, present an overview on various types of FIC glasses and glass ceramic composites. Silver phosphate glasses doped with different weight percent of lithium chloride (1, 5, 10 and 15 wt.%) were synthesized by melt quenching technique. The Ag2O–P2O5–(15 wt.%) LiCl glass exhibited the maximum electrical conductivity (σ = 8.91 × 10? 5 S cm? 1 at room temperature and 4.16 × 10? 3 S cm? 1 at 200 °C). Using this glass as an amorphous host material, glass–ceramic composites of Ag2O–P2O5–(15 wt.%) LiCl:xAl2O3 (x = 5–50 wt.%) were prepared. The ionic transference number, electrical conductivity, ionic mobility and carrier ion concentration of the synthesized samples were measured. Ag2O–P2O5–(15 wt.%) LiCl:(25 wt.%) Al2O3 composite system exhibited the maximum σ value (σ = 3.32 × 10? 4 S cm? 1 at room temperature and 2.88 × 10? 2 S cm? 1 at 200 °C ). Solid‐state batteries using undoped Ag2O–P2O5 glass, Ag2O–P2O5–(15 wt.%) LiCl glass and glass ceramic composite containing 25 wt.% Al2O3 as electrolytes were fabricated. The open circuit voltage (OCV) values and discharge time of these cells were measured and compared. It is found that the glass ceramic composites show enhanced ionic conduction, better OCV value and discharge characteristics.  相似文献   

16.
Sodium tracer diffusion coefficients, D*Na, have been measured using the radioactive isotope Na-22 in sodium boroaluminosilicate (NBAS) glasses containing either a small amount of As2O3 or Fe2O3. The chemical compositions of the first type of glasses are given by the formula [(Na2O)0.71(Fe2O3)0.05(B2O3)0.24]0.2[(SiO2)x(Al2O3)1 ? x]0.8 and those of the second type of glasses correspond to the formula [(Na2O)0.73(B2O3)0.24(As2O3)0.03]0.18[(SiO2)x(Al2O3)1 ? x]0.82. Tracer diffusion measurements were performed at different temperatures between 198 and 350 °C. Pre-annealing of the glass samples at their glass transition temperatures in common air was found to lead to changes in the values of sodium tracer diffusion coefficients. For the NBAS glasses containing Fe2O3, after pre-annealing for 5 h, the activation enthalpy derived for the sodium tracer diffusion increases almost linearly from 57.5 to 71.3 kJ/mol with a decrease in the alumina content while the pre-exponential factor of the sodium tracer diffusion coefficient increases from 2.1 · 10? 4 to 5.3 · 10? 4 cm2/s. For the iron-free NBAS glasses pre-annealed for 5 h, the activation enthalpy varies between 63.9 and 71.4 kJ/mol while the pre-exponential factor varies between 1.5 · 10? 4 and 1.2 · 10? 3 cm2/s. In addition, it was observed that the considered glasses take up water when annealed at 300 °C in wet air with PH2O = 474 mbar.  相似文献   

17.
《Journal of Non》2006,352(9-20):976-979
Structural characteristics of polycrystalline silicon (poly-Si) made by Ni-mediated crystallization of amorphous silicon (a-Si) were investigated by cross-sectional transmission electron transmission (XTEM) according to various a-Si thickness. The Ni area density of ∼1014 cm−2 was deposited onto a-Si and it was annealed at 500 °C in the presence of an electric field of 10 V/cm. It is found that NiSi2 precipitates form at the top and bottom interfaces of a-Si during annealing. After reaching its critical size the crystallization proceeds from the top and bottom interfaces. The growth of needle-like Si crystallites has been seen, showing a migration of NiSi2 precipitates through the a-Si network. 1700 nm thick a-Si can be crystallized within 30 min which is longer than that (10 min) of 50 nm thick a-Si. However, the quality of 50 nm thick poly-Si is better than that of 300 nm or 1700 nm thick poly-Si.  相似文献   

18.
We have studied the impact of temperature and pressure on the structural and electronic properties of Ge:P layers grown with GeH4+PH3 on thick Ge buffers, themselves on Si(0 0 1). The maximum phosphorous atomic concentration [P] exponentially decreased as the growth temperature increased, irrespective of pressure (20 Torr, 100 Torr or 250 Torr). The highest values were however achieved at 100 Torr (3.6×1020 cm?3 at 400 °C, 2.5×1019 cm?3 at 600 °C and 1019 cm?3 at 750 °C). P atomic depth profiles, “box-like” at 400 °C, became trapezoidal at 600 °C and 750 °C, most likely because of surface segregation. The increase at 100 Torr of [P] with the PH3 mass-flow, almost linear at 400 °C, saturated quite rapidly at much lower values at 600 °C and 750 °C. Adding PH3 had however almost no impact on the Ge growth rate (be it at 400 °C or 750 °C). A growth temperature of 400 °C yielded Ge:P layers tensily-strained on the Ge buffers underneath, with a very high concentration of substitutional P atoms (5.4×1020 cm?3). Such layers were however rough and of rather low crystalline quality in X-ray Diffraction. Ge:P layers grown at 600 °C and 750 °C had the same lattice parameter and smooth surface morphology as the Ge:B buffers underneath, most likely because of lower P atomic concentrations (2.5×1019 cm?3 and 1019 cm?3, respectively). Four point probe measurements showed that almost all P atoms were electrically active at 600 °C and 750 °C (1/4th at 400 °C). Finally, room temperature photoluminescence measurements confirmed that high temperature Ge:P layers were of high optical quality, with a direct bandgap peak either slightly less intense (750 °C) or more intense (600 °C) than similar thickness intrinsic Ge layers. In contrast, highly phosphorous-doped Ge layers grown at 400 °C were of poor optical quality, in line with structural and electrical results.  相似文献   

19.
We have used plasma enhanced chemical vapor deposition (PECVD) to deposit silicon thin films (~0.2–1 μm) with different crystallinity fractions on Nanosensors PtIr5 coated atomic force microscopy (AFM) cantilevers (450 × 50 × 2 μm3). Microscopic measurements of Raman scattering were used to map both internal stress and extrinsic stress induced in the films by bending the cantilevers using a nanomanipulator (Kleindiek Nanotechnik MM3A). Thanks to the excellent elasticity of the cantilevers, the films could be bent to curvature radii down to 300 μm. We observed the stress induced shift of the TO–LO phonon Raman band of more than 3 cm?1 for fully microcrystalline film corresponding to the stress ~0.8 GPa. The shift of the similar film with amorphous structure was ~2.5 cm?1.  相似文献   

20.
M.R. Sahar  K. Sulhadi  M.S. Rohani 《Journal of Non》2008,354(12-13):1179-1181
Er3+-doped tellurite glasses of the (80 ? x)TeO2–20ZnO–(x)Er2O3 system (0.5 mol% ? x ? 2.5 mol%) have successfully been made by melt-quenching technique and their structure has been investigated by means of DTA and Raman spectroscopy. The DTA results show the thermal parameters; such as the glass transition temperature (Tg) and crystallization temperature (Tc) were determined. It is found that this system provides a stable and wide glass formation range in which the glass stability around 99–140 °C may be obtained. The Raman spectroscopy used the structural studies in the glass system. Two Raman shift peaks were observed around 640–670 cm?1 and 720–740 cm?1, which correspond to the stretching vibration mode of TeO4 tbp and TeO3 tp, respectively. It is found that the spectral shift in Raman spectra is depending on the Er2O3 content. This evolution is an indication of the changes in the basic unit of the glass structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号