首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the structural and optical properties of GeO/SiO2 multilayers obtained by evaporation of GeO2 and SiO2 powders under ultrahigh vacuum conditions on Si(001) substrates. Both Raman and infrared absorption spectroscopy measurements indicate the formation of GeSi nanocrystals after postgrowth annealing at 800°C. High-resolution transmission electron microscopy characterizations show that the average size of the nanocrystals is about 5 nm. For samples containing GeSi nanocrystals, photoluminescence is observed at 14 K in the spectral range 1500–1600 nm. The temperature dependence of the photoluminescence is studied.  相似文献   

2.
3.
4.
Ge nanocrystals embedded in SiO2 and Lu2O3 matrices were fabricated using the pulsed laser deposition method and investigated using high-resolution transmission electron microscopy, X-ray diffractometry and photoluminescence spectroscopy. X-ray diffractometry and Fullprof computer program clearly revealed the bond lengths of Ge nanocrystals embedded in Lu2O3 matrix is smaller than that in SiO2 matrix, which can be attributed to the greater compressive stress exerted on Ge nanocrystals by the Lu2O3 matrix. The greater compressive stress will lead to much more defects induced at the interface of Ge nanocrystals and thus enhance the intensity of photoluminescence. The findings presented here indicate that the matrix environment of the nanocrystals plays a significant role in the photoluminescence property.  相似文献   

5.
Charge trapping and quenching of electroluminescence (EL) in SiO2 layers implanted by Ge and rare earth (RE) ions during hot electron injection were investigated. In case of the SiO2:Ge layer the EL quenching is caused by the transformation of the luminescent defects (Ge–Si or Ge–Ge) to optically inactive centers during hot electron excitation, whereas the EL from rare earth centers is quenched due to the electron trapping by RE-centers or their surroundings, but not due to their optical deactivation. Therefore, the flash lamp post-injection annealing releasing trapped electrons reactivates RE centers and increases the operating time of metal–oxide–silicon light emitting devices (MOSLEDs). PACS 72.20.Jv; 73.40.Qv; 73.50.Gr  相似文献   

6.
A pulsed anodic etching method has been utilized for nanostructuring of a copper-coated p-type (100) silicon substrate, using HF-based solution as electrolyte. Scanning electron microscopy reveals the formation of a nanostructured matrix that consists of island-like textures with nanosize grains grown onto fiber-like columnar structures separated with etch pits of grooved porous structures. Spatial micro-Raman scattering analysis indicates that the island-like texture is composed of single-phase cupric oxide (CuO) nanocrystals, while the grooved porous structure is barely related to formation of porous silicon (PS). X-ray diffraction shows that both the grown CuO nanostructures and the etched silicon layer have the same preferred (220) orientation. Chemical composition obtained by means of X-ray photoelectron spectroscopic (XPS) analysis confirms the presence of the single-phase CuO on the surface of the patterned CuO–PS matrix. As compared to PS formed on the bare silicon substrate, the room-temperature photoluminescence (PL) from the CuO–PS matrix exhibits an additional weak ‘blue’ PL band as well as a blue shift in the PL band of PS (S-band). This has been revealed from XPS analysis to be associated with the enhancement in the SiO2 content as well as formation of the carbonyl group on the surface in the case of the CuO–PS matrix.  相似文献   

7.
8.
9.
10.
《Physics letters. A》1998,244(5):449-453
A blue photoluminescence band centered at 440 nm was observed from SiGeSiO2 co-sputtered films at room temperature. This band gains intensity after the film was annealed at a temperature around 900°C in N2 atmosphere. From analysis of photoluminescence excitation, Raman and X-ray photoelectron spectra, it turns out that the luminescence is probably from some interfacial state between Si1−xGex nanoparticles and the SiO2 matrix.  相似文献   

11.
Both ZnO and Cu doped ZnO films with strong c-axis preferred orientation have been successfully prepared on porous silicon substrate, formed by electrochemical anodization, using radio frequency reactive magnetron sputtering method. X-ray diffraction measurements showed that the intensity of (0 0 2) diffraction peak first decreased and then increased with the Cu doping content increasing. Meanwhile new weak (1 0 0), (1 0 1), (1 0 2) and (1 1 0) diffraction peaks appeared after doping. The optical band edge of ZnO:Cu films, deduced from the optical absorption spectra, shifted to a longer wavelength comparing with the undoped sample and we attributed this red shift phenomenon to the decreasing of carrier concentration. The broad light emission from 350 to 800 nm was obtained by combining the blue–green emission from ZnO with red–orange emission from porous silicon. This could be used as a source of white light emitting diode chips underlying the importance of our work. The variation and origin of the emission peaks were discussed through the Gaussian deconvolution, and the Raman scattering spectral revealed the characteristics of porous silicon and multiphonon processes.  相似文献   

12.
Nanocrystalline Ho-doped BaTiO3, with average nanocrystals size of 20 nm, have been prepared using a sol–gel combustion technique. The structural and morphological properties of the powders have been investigated by X-ray powder diffraction and high resolution transmission electron microscopy. Chemical states of the holmium on the Ba0.97Ho0.03TiO3 ceramic surface were analyzed using X-ray photoelectron spectroscopy. Furthermore, their photoluminescence properties were analyzed.  相似文献   

13.
《Physica B: Condensed Matter》2000,275(1-3):248-252
The energetic model of ferromagnetic hysteresis calculates the magnetic state of materials by minimizing the total energy function for statistical domain behavior. The approach shows good agreement with the magnetization curves of mechanically alloyed Pr9Fe85B6 powder, heat treated at different temperatures.  相似文献   

14.
A brief overview of previously obtained and novel data on the manifestations of an analogue of Franck–Hertz effect in photo- and cathodoluminescence of wide-gap inorganic materials is presented. On the example of NaCl:Tl+ and MgO:Cr3+ single crystals, the excitation processes of the luminescence of 6s2 Tl+ ions and 3d3 Cr3+ ions by 5–15 keV electrons or 5–20 eV photons at 6–420 K have been studied. The rapid processes of the direct energy transfer to Tl+ by hot conduction electrons or to Cr3+ centers by hot electrons and/or hot valence holes have been separated from rapid excitonic and more inertial electron–hole processes.  相似文献   

15.
The first path-independent insertion-loss(PILOSS) strictly non-blocking 4×4 silicon electro–optic switch matrix is reported. The footprint of this switch matrix is only 4.6 mm×1.0 mm. Using single-arm modulation, the crosstalk measured in this test is-13 d B ~-27 d B. And a maximum crosstalk deterioration of 6d B caused by two-path interference is also found.  相似文献   

16.
We report photoluminescence spectra of defects in irradiated silicon which are stable below room temperature. No-phonon lines (STI)0 at ≈ 856 meV, ST2 at ≈ 1115 meV, and ST3 at ≈ 1126 meV are observed along with a broad emission band extending from 0.7 to 1 eV. The ST1 defect studied in detail is a deep hole trap at ≈ Ev + 0.25 eV, which in addition can bind an electron loosely. Piezospectroscopy shows that the defect is essentially <100 > axial symmetric with slight distortion to C1h. The absence of Zeeman splittings confirms the deep hole binding in an axially symmetric potential. The independence of dopants, the annealing behaviour, and comparison to EPR and IR active defects suggest a correlation of the ST1 defect with interstitial carbon.  相似文献   

17.
18.
The scaling of microstructure to the nanoscale is a well-known method of enhancing the physical properties of many materials. New findings reveal a 10-fold enhancement in the hardness of nanocrystalline Ta and V nanolaminates is attributable to grain size effects, more so than the layer pair spacing. A Hall–Petch relationship of hardness with grain size appears in these body-centred-cubic nanocrystalline structures.  相似文献   

19.
Silicon–carbon nanoceramics have been synthesised from hexamethyldisilane (HMDS) by the atmospheric pressure chemical vapour synthesis (APCVS). Direct aerosol phase synthesis enables continuous production of high purity materials in one-stage process. The particle formation is based on the decomposition of the precursor in a high temperature reactor. Reaction of the gas phase species leads to homogeneous nucleation and formation of the nanoparticles with a narrow size distribution (geometric mean diameter range of particle number size distribution 160–200 nm with 1.5–1.6 geometric standard deviation at reaction temperatures 800–1200 °C). A systematic investigation of the influence of the process temperature on the powder characteristics, including the particle size, crystallinity, chemical structure, surface and bulk composition and surface morphology, was carried out. At the reactor temperature of 800 °C, the synthesised nanoparticles were amorphous preceramics containing mostly SiC4, Si–CH2–Si and Si–H units. The composition of the powder turned towards nanocrystalline 3C–SiC (crystal size under 2 nm) when the reaction temperature was increased to 1200 °C. The reaction temperature appeared to be a key parameter controlling the structure and properties of the synthesised powders.  相似文献   

20.
Ipsocentric calculations of current density at the B3LYP/6-311++G(2d,2p) level show that the planar Si6 ring supports a diatropic π ring current of about half the strength of the equivalent π current in benzene, both in the presumed global optimum geometry of Si6Li6 and in geometries occupying higher-energy local minima, corroborating the attribution of aromaticity to this silicon analogue of benzene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号