首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The finding that compounds of the type (Me3Si)2(PhMe2Si)CSiMePhX react with electrophiles to give very predominantly rearranged products (Me3Si)2(Ph2MeSi)CSiMe2Y, which would be expected to be thermodynamically disfavoured, can be rationalized in terms of a mechanism in which the anchimerically-assisted departure of X gives the Ph-bridged cation [(Me3Si)2

MePh]+ which is attacked by the nucleophile at the less hindered centre bearing two Me groups rather than that bearing one Me and one Ph group, with the outcome determined by kinetic rather than thermodynamic factors. Both (Me3Si)2(Ph2MeSi)CSiMe2Br and its isomer (Me3Si)2(PhMe2Si)CSiMePhBr react with AgBF4 in CH2Cl2 or Et2O to give >95% of the fluoride (Me3Si)2(Ph2MeSi)CSiMe2F. Reaction of the bromide (Me3Si)2(PhMe2Si)CSiMePhBr with AgO2CCF3 in Et2O, and that of the hydride (Me3Si)2(PhMe2Si)CSiMePhH with ICl in CCl4, likewise give >95% of the rearranged (Me3Si)2(Ph2MeSi)CSiMe2O2CCF3 and (Me3Si)2(Ph2MeSi)CSiMe2Cl, respectively.  相似文献   

2.
Direct nucleophilic displacement of iodine to give (Me3Si)3 CSiMe2 Y, where Y = F, NCO, NCS, CN or N3, takes place when (Me3Si)3 CSiMe2I is treated with solutions of CsF, KOCN, KSCN, KCN, or NaN3 in MeOH or CH3 CN. The order of effectiveness of the nucleophiles appears to be N3 > F > CN > NCS > NCO in MeOH and NCS > NCO > CN, F in CH3 CN.  相似文献   

3.
Monomeric Trilithium-tris[tert-butyldimethylsilylamido]phenylsilane, PhSi[NLi(thf)SiMe2CMe3]3 – Synthesis and Crystal Structure Lithiated tert-butyldimethylsilylamine reacts with trifluorophenylsilane in a molar ratio 2:1 or 3:1 to give the bis- and tris(silylamino)silanes 1 [(Me3CSiMe2NH)2SiFPh] and 2 [(Me3CSiMe2NH)3SiPh]. The trilithium derivative 3 [Me3CSiMe2NLi(thf)]3SiPh is obtained in the reaction of 2 with n-BuLi in hexane/thf. 3 crystallizes as a monomer forming three planar four-membered (LiNSiN)-rings. The results of the crystal structure of 3 are discussed.  相似文献   

4.
The (Me3Si)3C group causes very large steric hindrance to nucleophilic displacement at a silicon atom to which it is attached, and (Me3Si)3CSiMe2Cl is even less reactive than t-Bu3SiCl towards base. The compounds (Me3Si)3CSiMe2X (X = Cl, Br, or I) are cleaved by MeOH/MeONa to give (Me3Si)2CHSiMe2OMe, possibly via the silaolefin (Me3Si)2 CSiMe2, and the correspondLug (Me3Si)3 CSiPh2X compounds undergo the analogous reaction even more readily. The halides (Me3Si)3CSiR2X (X = Cl or Br) and (Me3Si)3CSiCl3 do not react with boiling alcoholic silver nitrate, but the iodides (Me3Si)3CSiR2I are rapidly attacked.  相似文献   

5.
Lithiation of (Me3Si)3CH by methyllithium (ether-THF) yields (Me3Si)3CLi and by t-butyllithium (C5H12-TMEDA) yields (Me3Si)2CHSiMe2CH2Li. Only starting material is recovered when (Me3Si)3CH is allowed to react with n-butyl- lithium (ether-THF and C5H12-TMEDA) and t-butyllithium (C5H12 and C5H12- THF). (Me3Si)4C is lithiated by t-butyllithium (C5H12-TMEDA) to give (Me3Si)3- CSiMe2CH2Li, but not by methyllithium (ether-THF and ether-THF-TMEDA). The structures of the lithiated compounds are based on the carbonation products. The above results are explained in terms of carbanion stability and steric effects. Spectral data are reported on the α-silylacetic acids.  相似文献   

6.
Reactions of Lithium Hydridosilylamides RR′(H)Si–N(Li)R″ with Chlorotrimethylsilane in Tetrahydrofuran and Nonpolar Solvents: N‐Silylation and/or Formation of Cyclodisilazanes The lithiumhydridosilylamides RR′(H)Si–N(Li)R″ ( 2 a : R = R′ = CHMe2, R″ = SiMe3; 2 b : R = R′ = Ph, R″ = SiMe3; 2 c : R = R′ = CMe3, R″ = SiMe3; 2 d : R = R′ = R″ = CMe3; 2 e : R = Me, R′ = Si(SiMe3)3, R″ = CMe3; 2 f – 2 h : R = R′ = Me, f : R″ = 2,4,6‐Me3C6H2, g : R″ = SiH(CHMe2)2, h : R″ = SiH(CMe3)2; 2 i : R = R′ = CMe3, R″ = SiH(CMe3)2) were prepared by reaction of the corresponding hydridosilylamines RR′(H)Si–NHR″ 2 a – 2 i with n‐butyllithium in equimolar ratio in n‐hexane. The unknown amines 1 e – 1 i and amides 2 f – 2 i have been characterized spectroscopically. The wave numbers of the Si–H stretching vibrations and 29Si–1H coupling constants of the amides are less than of the analogous amines. This indicates a higher hydride character for the hydrogen atom of the Si–H group in the amide in comparison to the amines. The 29Si‐NMR chemical shifts lie in the amides at higher field than in the amines. The amides 2 a – 2 c and 2 e – 2 g react with chlorotrimethylsilane in THF to give the corresponding N‐silylation products RR′(H)Si–N(SiMe3)R″ ( 3 a – 3 c , 3 e – 3 g ) in good yields. In the reaction of 2 i with chlorotrimethylsilane in molar ratio 1 : 2,33 in THF hydrogen‐chlorine exchange takes place and after hydrolytic work up of the reaction mixture [(Me3C)2(Cl)Si]2NH ( 5 a ) is obtained. The reaction of the amides 2 a – 2 c , 2 f and 2 g with chlorotrimethylsilane in m(p)‐xylene and/or n‐hexane affords mixtures of N‐substitution products RR′(H)Si–N(SiMe3)R″ ( 3 a – 3 c , 3 f , 3 g ) and cyclodisilazanes [RR′Si–NR″]2 ( 6 a – 6 c , 6 f , 6 g ) as the main products. In case of the reaction of 2 h the cyclodisilazane 6 h was obtained only. 2 c – 2 e show a very low reactivity toward chlorotrimetyhlsilane in m‐xylene and toluene resp.. In contrast to Me3SiCl the reactivity of 2 d toward Me3SiOSO2CF3 and Me2(H)SiCl is significant higher. 2 d react with Me3SiOSO2CF3 and Me2(H)SiCl in n‐hexane under N‐silylation to give RR′(H)Si–N(SiMe3)R″ ( 3 d ) and RR′(H)Si–N(SiHMe2)R″ ( 3 d ′) resp. The crystal structures of [Me2Si–NSiMe3]2 ( I ) ( 6 f , 6 g and 6 h ) have been determined.  相似文献   

7.
The Diels—Alder reactions of α-pyrone with Me3SiCCSiMe3, Me3SiCCSiMe2H, Me2HSiCCSiMe2H, Me3GeCCGeMe3, Me3SiCCGeMe3, Me3SiCCSnMe3 and EtCCEt were examined. All except the first two acetylenes gave the expected 1,2-disubstituted benzene product, in line with results obtained previously with Me3SnCCSnMe3. The first two acetylenes, Me3SiCCSiMe3 and Me3SiCCSiMe2H, also yielded benzene products containing substantial amounts of the 1,3-disubstituted benzenes, as well as minor amounts of the 1,4-isomers. This formation of unexpected isomers during these reactions was shown to result from acid-catalyzed rearrangement of the initially formed 1,2-disubstituted products, 1,2-(Me3Si)2C6H4 and 1-Me3Si-2-Me2HSiC6H4. The acidic impurities arose from pyrolysis of the bromobenzene solvent used or were introduced as contaminants of the α-pyrone. Such isomerizations were inhibited by addition of small amounts of triethylamine. The fact that no rearrangement took place with the other acetylenes is due to the scavenging of acidic impurities which might cause isomerization by the starting acetylene and the benzene product via metal—carbon bond cleavage processes.  相似文献   

8.
Alternative Ligands. XXI. Novel Donor/Acceptor Ligands Me2PCH2CH2SiFnMe3-n, Me2PCH2CH2SiR(C6H4F)2, and (2-Me2PC6H4)SiXMe2 Donor/acceptor ligands of the type Me2PCH2CH2SiX3 [X = Cl ( 1 ), F ( 2 ), Me ( 3 ), OMe ( 4 )], (Me2PCH2CH2)2SiX2 [X = Cl ( 6 ), F ( 7 )], Me2PCH2CH2SiX(C6H4F)2 [X = F ( 5 ), Me ( 8 )], and Me2PCH2CH2SiXnMe3-n[n = 1; X = Cl ( 10 ), F ( 11 ); n = 2; X = F ( 9 )] are prepared in yields between 42 and 95% by photochemical addition of Me2PH to the corresponding vinylsilane precursors. In case of the halogen containing representatives formation of solid polyadducts, due to Lewis acid/base interaction between P-donor and Si-acceptor function, reduces the yields. Ligands of the type (2-Me2PC6H4)SiXMe2 [X = NMe2 ( 12 ), Cl ( 13 ), F ( 14 )] are obtained by two different routes (Abb. 3), using 2-chlorobromobenzene as the starting material. New compounds have been characterized by analytical (C, H) and spectroscopic (NMR, MS) investigations. In order to elucidate the associative properties compounds 2 and 9 were used for the following experiments:
  • – Study of the influence of dissolution on the proton and fluorine resonances of 2 and 9 ,
  • – investigation of the adduct equilibrium (–H2CF3Si←PMe2CH2–)n + nBF3 → n[F3B←PMe2CH2CH2SiF3],
  • – cleavage of the polyadduct of 2 using [NH4]F and [Me4N]F, respectively, for the formation of hexacoordinate complex anions [Me2PCH2CH2SiF5]2?.
The results obtained confirm the assumption that oligo- and polymerisation are due to P→Si interaction.  相似文献   

9.
The Reaction Behaviour of Lithiated Aminosilanes RR′Si(H)N(Li)SiMe3 The bis(trimethylsilyl)aminosubstituted silances RR′Si(H)N(SiMe3)2 11 – 16 (R,R′ = Me, Me3SiNH, (Me3Si)2N) are obtained by the reaction of the lithium silylamides RR′Si(H)N(Li)SiMe3 1 – 10 (R,R′ = Me3SiNLi, Me, Me3SiNH, (M3Si)2N) with chlorotrimethylsilane in the polar solvent tetrahydrofurane (THF). In the reaction of the lithium silylamides [(Me3Si)2N]2(Me3SiNLi)SiH 10 with chlorotrimethylsilane in THF the rearranged product 1,1,3-tris[bis(trimethylsilyl)amino]-3-methyl-1,3-disila-butane [(Me3Si)2N]2Si(H)CH2SiMe2N(SiMe3)2 17 is formed. The reaction of the lithium silyamides RR′ Si(H)N(Li)SiMe3 1 – 3 (1: R = R′ = Me; 2: R = Me, R′ = Me3SiNH; 3: R = Me, R′ = Me3SiNLi) with chlorotrimethylsilane in the nonpolar solvent n-hexane gives the cyclodisilazanes [RR′ Si? NSiMe3]2 18 – 22 (R = Me, Me3SiNH, (Me3Si)2N; R′ = Me, Me3SiNH, (Me3Si)2N, N(SiMe3)Si · Me(NHSiMe3)2) and trimethylsilane. The lithium silylamides 4 , 5 , 6 , 9 , 10 (4: R = R′ = Me3SiNH; 5: R = Me3SiNH, R′ = Me3SiNLi; 6: R = R′ = Me3SiNLi; 9: R = (Me3Si)2N, R ′ = Me3SiNLi; 10: R = R′ = (Me3Si)2N) shows with chlorotrimethylsilane in n-hexane no reaction. The crystal structure of 17 and 21 are reported.  相似文献   

10.
Benzyl chloride was treated with (Me3Si)3CLi to give (Me3Si)3CCH2Ph (1). A new styrene derivative, (Me3Si)3CCH2C6H4(CHCH2-p) (2), was synthesized by reaction of p-vinylbenzyl chloride with (Me3Si)3CLi in the presence of CuCl. Addition and oxidation reactions on 2 gave a series of new compounds (Me3Si)3CCH2C6H4X-p (X = CH2CH3, CHBrCH2Br, CHClCH2I, CHBrCH2I, cyclo-C3H3Cl2, CHOHCH2OH, COOH, CH2OH).  相似文献   

11.
Summary. The complexes [RuCp(CH3CN)2(Ph2PCH2CH2Si(OMe)3)]PF6 and [RuCp(CH3CN) (Ph2PCH2CH2Si(OMe)3)2]PF6 were obtained in good yields by treatment of [RuCp(CH3CN)3]PF6 with 1 and 2 equivs of Ph 2PCH2CH2Si(OMe)3. Both free Ph 2PCH2CH2Si(OMe)3 and the two complexes were grafted onto the surface of powdered silica. The surface coverage was determined independently by 31P solid state NMR and IR spectroscopy. IR data revealed that for Ph 2PCH2CH2Si(OMe)3 and the complexes 52, 52, and 18 molecules, respectively, were immobilized per 100nm2 of SiO2 surface. Similar values were obtained from 31P MAS NMR measurements. With the immobilized first complex the catalytic redox isomerization of allyl alcohol to propanal has been studied by means of IR spectroscopy and 1H NMR spectroscopy showing the quantitative formation of aldehyde. While in the first cycle satisfactory turnover numbers were achieved, the subsequent cycles showed only low conversions to aldehyde presumably due to decomposition of the complex. The immobilized second complex was catalytically inactive.Received February 25, 2003; accepted March 24, 2003 Published online August 18, 2003  相似文献   

12.
[Li(12-Crown-4){(Me3Si)2N}2TiCH2SiMe2NSiMe3] – an Ion-Pair with a Linear Li–C–Ti-Axis The title compound ( 1 ) has been prepared from Ti[N(SiMe3)2]3 and n-butyllithium in OEt2/n-hexane in the presence of 12-crown-4. Smaragd-green single crystals of 1 · C7H8 which were suitable for X-ray crystallography were formed from toluene solutions at –18 °C. According to the crystal structure determination 1 forms ion pairs between the lithium atom and the CH2-carbon atom which is member of a planar Ti–C–Si–N heterocycle. The coordination geometry of the Li–C–Ti axis is linear (bond angle 172.8° in average of the two symmetry independent species) with coordination number five at the CH2-carbon atom.  相似文献   

13.
The order of reactivity and the selectivity of 1,1-dimethyl-1-silaethene (Me2SiCH2), generated from 1,1-dimethylsilacyclobutane at 611°, toward a variety of substrates was determined using standard competition experiments. The observed reactivity order was Ph2CO>ROH, ArOH ? m-ClPhNH2 CH3CN, which indicates that with these substrates and under the reaction conditions used, Me2SiCH2 is behaving like an electrophilic species. Within a given class of substrates, polar effects were found to be generally unimportant, while increased steric effects caused a decrease in rate (up to 50%).  相似文献   

14.
Radical reactions of Me3SiPH2 with Me2Si(CHCH2)2 or Si(CHCH2)4 yield the 4-silaphosphorinanes Me2Si(CH2CH2)2PSiMe3, (CH2CH)2Si(CH2CH2)2PSiMe3, or [Me3SiP(CH2CH2)2]2Si; methanolysis of these produces quantitatively the secondary phosphorinanes Me2Si(CH2CH2)2PH, (CH2CH)2Si(CH2CH2)2PH, or [HP(CH2CH2)2]2Si. Me2Si(CH2CH2)2PSiMe3 with O2/H2O yields the phosphinic acid Me2Si(CH2CH2)2P(O)OH. All compounds are characterized by spectral data; an X-ray crystal analysis confirms the structure of Me2Si(CH2CH2)2P(O)OH.  相似文献   

15.
The polycarbosilanes (PCS) with meta-linkage bending unit ((SINGLE BOND)Me2Si(SINGLE BOND)m(SINGLE BOND)C6H4(SINGLE BOND)Me2Si(SINGLE BOND)CH2CH2(SINGLE BOND)) were successfully synthesized in mild conditions by hydrosilylation in the presence of [Pt{(CH2(DOUBLE BOND)CHSiMe2)2O}2]. The PCS obtained were soluble in various solvents owing to the lowering of the crystallinity. These properties are well compared with those of the PCS [(SINGLE BOND)Me2Si(SINGLE BOND)p(SINGLE BOND)C6H4(SINGLE BOND)Me2Si(SINGLE BOND)CH2CH2(SINGLE BOND)]n. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
Formation and Reactions of the CH2Li‐Derivatives of tBu2P–P=P(CH3)tBu2 and (Me3Si)tBuP–P=P(CH3)tBu2 With nBuLi, (Me3Si)tBuP–P=P(CH3)tBu2 ( 1 ) and tBu2P–P=P(CH3)tBu2 ( 2 ) yield (Me3Si)tBuP–P=P(CH2Li)tBu2 ( 3 ) and tBu2P–P=P(CH2Li)tBu2 ( 4 ), wich react with Me3SiCl to give (Me3Si)tBuP–P=P(CH2–SiMe3)tBu2 ( 5 ) and tBu2P–P=P(CH2–SiMe3)tBu2 ( 6 ), respectively. With tBu2P–P(SiMe3)–PtBuCl ( 7 ), compound 3 forms 5 as well as the cyclic products [H2C–P(tBu)2=P–P(tBu)–PtBu] ( 8 ) and [H2C–P(tBu)2=P–P(PtBu2)–P(tBu)] ( 9 ). Also 3 forms 8 with tBuPCl2. The cleavage of the Me3Si–P‐bond in 1 by means of C2Cl6 or N‐bromo‐succinimide yields (Cl)tBuP–P=P(CH3)tBu2 ( 10 ) or (Br)tBuP–P=P(CH3)tBu2 ( 11 ), resp. With LiP(SiMe3)2, 10 forms (Me3Si)2P–P(tBu)–P=P(CH3)tBu2 ( 12 ), and Et2P–P(tBu)–P=P(CH3)tBu2 ( 13 ) with LiPEt2. All compounds are characterized by 31P NMR Data and mass spectra; the ylide 5 and the THF adduct of 4 additionally by X‐ray structure analyses.  相似文献   

17.
Lithium Hydridosilylamides R2(H)SiN(Li)R′ – Preparation, Properties, and Crystal Structures The hydridosilylamines R2(H)SiNHR′ ( 1 a : R = CHMe2, R′ = SiMe3; 1 b : R = Ph, R′ = SiMe3; 1 c : R = CMe3, R′ = SiMe3; 1 d : R = R′ = CMe3) were prepared by coammonolysis of chlorosilanes R2(H)SiCl with Me3SiCl ( 1 a , 1 b ) as well as by reaction of (Me3C)2(H)SiNHLi with Me3SiCl ( 1 c ) and Me3CNHLi with (Me3C)2(H)SiCl ( 1 d ). Treatment of 1 a–1 d with n-butyllithium in equimolar ratio in n-hexane resulted in the corresponding lithiumhydridosilylamides R2(H)SiN(Li)R′ 2 a–2 d , stable in boiling m-xylene. The amines and amides were characterized spectroscopically, and the crystal structures of 2 b–2 d were determined. The comparison of the Si–H stretching vibrations and 29Si–1H coupling constants indicates that the hydrogen atom of the Si–H group in the amides has a high hydride character. The amides are dimeric in the solid state, forming a planar four-membered Li2N2 ring. Strong (Si)H … Li interactions exist in 2 c and 2 d , may be considered as quasi tricyclic dimers. The ‘‘NSiHLi rings”︁”︁ are located on the same side of the central Li2N2 ring. In 2 b significant interactions occurs between one lithium atom and the phenyl substituents. Furthermore all three amides show CH3 … Li contacts.  相似文献   

18.
Low-viscosity, methoxylated polysiloxane resins incorporating Me2SiO2/2 (D) and SiO4/2 (Q) units were prepared using nonhydrolytic condensation between Si—Cl and Si—OMe groups with the formation of MeCl, catalyzed by a Lewis acid. With the commonly used catalysts, condensation between two Si—OMe groups, with formation of Me2O, also took place to a large extent, hindering the control of the degree of condensation of the resins. Several catalysts were tested by monitoring the formation of MeCl and Me2O using sealed NMR tubes and 1H-NMR spectroscopy. The best compromise between reactivity and selectivity was obtained with ZrCl4. Resins with various compositions were prepared in the absence of solvent by condensation between Me2SiCl2 and Si(OMe)4 at 130°C, catalyzed by 1 mol % ZrCl4. They were characterized using viscosimetry, gas chromatography coupled with mass-spectrometry (GC-MS), and quantitative 29Si-NMR spectroscopy. The resins consisted of a complicated mixture of oligomers, linear or branched (n > 1) and cyclic (n > 3), with a high degree of D/Q bonding. The distribution of Si—OMe and Si—OSi bonds and the bonding between D and Q units were found to be nearly random. This was ascribed to the occurrence of Si—OSi/Si—OMe and Si—OSi/Si—OSi redistribution reactions that reached equilibrium during the synthesis. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2415–2425, 1998  相似文献   

19.
For the new complex Me3 SiMe2 SiCH2 Fe(CO)2Cp the metalcarbon bond undergoes normal insertion reactions;however, under certain conditions the SiSiCFe framework rearranges to the siliconiron bonded system SiC SiFe.  相似文献   

20.
The reaction of (π-C5H5)Co(CO)2 with PhCCSiMe2R (R = Me, SiMe3) gave two isomeric cyclobutadiene complexes, cis- and trans-(π-C5H5)Co[Ph2C4(SiMe2R)2], in almost quantitative yields. However, the reaction with RMe2SiCCSiMe2R (R = Me, Ph) led to the formation of new dinuclear cobalt complexes. For example, with bis(trimethylsilyl)acetylene, (π-C5H5)2Co(CO)[(Me3Si)2C2] was obtained quantitatively. The latter was further converted to (π-C5H5)Co(Ph4C4) and (πC5H5)Co[cis-Ph2C4(Me3Si)2] by treatment with PhCCPh. The physical properties and spectroscopic characteristics of these new compounds are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号