首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have studied the structural, electronic and phonon properties of the YP and YAs compounds in NaCl(B1) and CsCl(B2) structures using the density functional theory within the generalized gradient approximation (GGA). The calculated lattice constants, static bulk modulus, first-order pressure derivative of the bulk modulus and transition pressure are reported and compared with previous calculations. We have carried out the calculations of band structure and density of states (DOS) for YP and YAs. Then, a linear-response approach to the density-functional theory is used to derive the phonon frequencies and DOS in both B1 and B2 structures.  相似文献   

2.
The structural, phase transition, elastic, lattice dynamic and thermodynamic properties of rare-earth compounds PrP and PrAs with NaCl (B1), CsCl (B2), ZB (B3), WC (Bh) and CuAu (L10) structures are investigated using the first principles calculations within the generalized gradient approximation (GGA). For the total-energy calculation, we have used the projected augmented plane-wave (PAW) implementation of the Vienna Ab-initio Simulation Package (VASP). Specifically, some basic physical parameters, e.g. lattice constants, bulk modulus, elastic constants, shear modulus, Young's modulus and Poison's ratio, are predicted. The obtained equilibrium structure parameters are in excellent agreement with the experimental and theoretical data. The temperature and pressure variations of the volume, bulk modulus, thermal expansion coefficient, heat capacity and Debye temperature are calculated in wide pressure and temperature ranges. The phonon dispersion curves and corresponding one-phonon density of states (DOS) for both compounds are also computed in the NaCl (B1) structure.  相似文献   

3.
H.Y. Wu  Y.H. Chen  C.R. Deng  X.Y. Han  P.F. Yin 《哲学杂志》2015,95(21):2240-2256
The electronic, elastic and dynamical properties of MgSe in the rocksalt (B1) and iron silicide (B28) phase and the effects of pressure on these properties are investigated using first-principles method. The calculated electronic band structure indicates that the B1 phase of MgSe presents an indirect band-gap feature and the band gaps initially increase with pressure and subsequently decrease upon compression. Remarkably, an indirect-to-direct band-gap transition has been observed at the phase transition pressure. The elastic constants, bulk modulus, shear modulus, Young’s modulus, elastic anisotropy and B/G ratio of MgSe in the B1 and B28 phase at high pressure have also been investigated. The bulk modulus, shear modulus and Young’s modulus all increase monotonously with the increasing of pressure for the B1 and B28 phase of MgSe. The calculated phonon frequencies of the B1 phase at zero pressure agree well with available theoretical results. And the transverse acoustic phonon TA(X) mode of this phase completely softening to zero at 82 GPa. The phonon curves of the B28 phase under pressure have also been successfully investigated.  相似文献   

4.
First principles calculations of structural, electronic, elastic, and phonon properties of the intermetallic compounds FeSi and CoSi in the B2 (CsCl) structure are presented, using the pseudopotential plane-wave approach based on density functional theory, within the local density approximation. The optimized lattice constants, independent elastic constants, bulk modulus, and first-order pressure derivative of the bulk modulus are reported for the B2 structure and compared with earlier experimental and theoretical calculations. A linear-response approach to density functional theory is used to derive the phonon dispersion curves, and the vibrational partial and total density of states. Atomic displacement patterns for FeSi at the Γ, X, and R symmetry points are presented. The calculated zone-center optical phonon mode for FeSi is in good agreement with experimental and theoretical data.  相似文献   

5.
We have predicted high pressure structural behavior and elastic properties of alkaline earth tellurides (AETe; AE = Ca, Sr, Ba) by using two body interionic potential approach with modified ionic charge (Z m e). This method has been found quite satisfactory in case of the rare earth compounds. The equation of state curve, structural phase transition pressure from NaCl (B1) to CsCl (B2) phase and associated volume collapse at transition pressure of alkaline earth tellurides (AETe) obtained from this approach, so have been compared with experimentally measured data reveal good agreement. We have also investigated bulk modulus, second and third order elastic constants and pressure derivatives of second order elastic constants at ambient pressure which shows predominantly ionic nature of these compounds. First time, we have calculated the Poisson ratio, Young and Shear modulus of these compounds.   相似文献   

6.
运用基于赝势平面波基组的密度泛函程序VASP并结合Quantum ESPRESSO,Phonopy软件包对压力下VN的结构、力学性质、声子色散关系进行了第一性原理的研究.分别对NaCl型(B1),CsCl型(B2),WC型(Bh)三种构型的VN进行了计算,三种结构的体积能量曲线、焓压关系和声子谱表明在常压下六角WC结构与立方结构相比更稳定.随着压力增加VN由Bh结构到B1结构的相变点发生在30GPa左右,而B1结构到B2结构的相变点可能发生在150GPa左右.常压下三种结构的VN是力学稳定的,其弹性常数和弹性模量都有随压强的增大而增加的趋势,三者都是脆性材料.B1结构和B2结构坐标基矢方向上的杨氏模量数值与体对角线方向上的差距较大,体现出明显的各向异性.随压力的增加B1结构各向异性程度增大而B2结构各向异性程度减小  相似文献   

7.
Ab initio calculations,based on norm-conserving nonlocal pseudopotentials and density functional theory(DFT),are performed to investigate the structural,elastic,dielectric,and vibrational properties of aluminum arsenide(AlAs) with a zinc-blende(B3) structure and a nickel arsenide(B81) structure under hydrostatic pressure.Firstly,the path for the phase transition from B3 to B81 is confirmed by analyzing the energies of different structures,which is in good agreement with previous theoretical results.Secondly,we find that the elastic constants,bulk modulus,static dielectric constants,and the optical phonon frequencies vary in a nearly linear manner under hydrostatic pressure.What is more,the softening mode of the transversal acoustic mode at the X point supports the phase transition in AlAs.  相似文献   

8.
Ab initio calculations, based on norm-conserving nonlocal pseudopotentials and density functional theory (DFT), are performed to investigate the structural, elastic, dielectric, and vibrational properties of aluminum arsenide AlAs with zinc-blende (B3) structure and nickel arsenide (B81) structure under hydrostatic pressure. Firstly, the path for the phase transition from B3 to B81 is confirmed by analyzing the energies of different structures, which is in good agreement with previous theoretical results. Secondly, we find that the elastic constants, bulk modulus, static dielectric constants, and the optical phonon frequencies are varying in a nearly linear manner under hydrostatic pressure. What is more, the softening mode of transversal acoustic mode at X point supports the phase transition in AlAs.  相似文献   

9.
We present first-principle calculations on the structural, elastic, and high-pressure properties of rubidium halides compounds, using the pseudo-potential plane-waves approach based on density functional theory, within the generalized gradient approximation. Results are given for lattice constant, bulk modulus and its pressure derivative. The pressure transition at which these compounds undergo structural phase transition from NaCl-type to CsCl-type structure are calculated and compared with previous calculations and available experimental data. The elastic constants and their pressure dependence are calculated using the static finite strain technique. We derived the bulk and shear moduli, Young's modulus and Poisson's ratio for ideal polycrystalline RbF, RbCl, RbBr, and RbI aggregates. We estimated the Debye temperature of these compounds from the average sound velocity.  相似文献   

10.
A density functional (DFT) calculations of the structural, elastic and high pressure properties of the cubic XBi (X=U,Cm) compounds, has been reported using the full potential linear muffin-tin orbital (FP-LMTO) method. In this approach the local density approximation (LDA) is used for the exchange-correlation (XC) potential. Results are given for lattice constant, bulk modulus and its pressure derivatives. The pressure transitions at which these compounds undergo structural phase transition from NaCl-type (B1) to CsCl-type (B2) phase were found to be in good agreement with the available theoretical results. We have determined the elastic constants C11, C12, C44 and their pressure dependence which have not been established experimentally or theoretically.  相似文献   

11.
The structural and mechanical properties of LnO (Ln=Sm, Eu, Yb) compounds have been investigated using a modified interionic potential theory, which includes the effect of Coulomb screening. We predicted a structural phase transition from NaCl (B1)- to CsCl (B2)-type structure and elastic properties in LnO compounds at very high pressure. The anomalous properties of these compounds have been correlated in terms of the hybridisation of f-electrons of the rare earth ion with conduction band and strong mixing of f-states of lanthanides with the p-orbital of neighbouring chalcogen ion. For EuO, the calculated transition pressure, bulk modulus and lattice parameter are close to the experimental data. The nature of bonds between the ions is predicted by simulating the ion-ion (Ln-Ln and Ln-O) distances at high pressure. The second order elastic constants along with shear modulus and Young's modulus, elastic anisotropy and Poisson's ratio are also presented for these oxides.  相似文献   

12.
A comprehensive first principles study of structural, elastic, electronic, and phonon properties of zirconium carbide (ZrC) is reported within the density functional theory scheme. The aim is to primarily focus on the vibrational properties of this transition metal carbide to understand the mechanism of phase transition. The ground state properties such as lattice constant, elastic constants, bulk modulus, shear modulus, electronic band structure, and phonon dispersion curves (PDC) of ZrC in rock-salt (RS) and high-pressure CsCl structures are determined. The pressure-dependent PDCs are also reported in NaCl phase. The phonon modes become softer and finally attain imaginary frequency with the increase of pressure. The lattice degree of freedom is used to explain the phase transition. Static calculations predict the RS to CsCl phase transition to occur at 308?GPa at 0?K. Dynamical calculations lower this pressure by about 40?GPa. The phonon density of states, electron–phonon interaction coefficient, and Eliashberg's function are also presented. The calculated electron–phonon coupling constant λ and superconducting transition temperature agree reasonably well with the available experimental data.  相似文献   

13.
王金荣  朱俊  郝彦军  姬广富  向钢  邹洋春 《物理学报》2014,63(18):186401-186401
采用密度泛函理论中的赝势平面波方法系统地研究了高压下RhB的结构相变、弹性性质、电子结构和硬度.分析表明,RhB在25.3 GPa时从anti-NiAs结构相变到FeB结构,这两种结构的弹性常数、体弹模量、剪切模量、杨氏模量和弹性各向异性因子的外压力效应明显.电子态密度的计算结果显示,这两种结构是金属性的,且费米能级附近的峰随着压强的增大向两侧移动,赝能隙变宽,轨道杂化增强,共价性增强,非局域化更加明显.此外,硬度计算结果显示,anti-NiAs-RhB的金属性比较弱,有着较高的硬度,属于硬质材料.  相似文献   

14.
We report local density-functional calculations using the full-potential linearized muffin-tin orbital method (FP-LMTO) for platinum carbide (PtC) in the, rock-salt (B1), zinc-blende (B3), wurtzite (B4), nickel-arsenide (B8) and PbO (B10) structures. The ground state properties such as the equilibrium lattice constant, elastic constants, the bulk modulus and its pressure derivative of PtC in these phases are determined and compared with available experimental and theoretical data.Our calculations show that the ground state phase of PtC to be zinc-blende (B3) structure at zero pressure and the nickel-arsenide (B8) structure is a high-pressure phase. The transition pressures at which this compound undergoes the structural phase transition from (B3) to (B8) and from (B3) to (B1) are found to be 34.25 and 51.28 GPa, respectively. The highest bulk modulus values in the nickel-arsenide (B8), zinc-blende (B3), rock-salt (B1) and PbO (B10) structures indicate that PtC is a hard material.  相似文献   

15.
吕兵  令狐荣锋  易勇  杨向东 《中国物理 B》2010,19(7):76201-076201
This paper carries out the First principles calculation of the crystal structures (zinc blende (B3) and rocksalt (B1)) and phase transition of boron arsenic (BAs) based on the density-functional theory. Using the relation between enthalpy and pressure, it finds that the transition phase from the B3 structural to the B1 structural occurs at the pressure of 113.42GPa. Then the elastic constants C11, C12, C44, bulk modulus, shear modulus, Young modulus, anisotropy factor, Kleinman parameter and Poisson ratio are discussed in detail for two polymorphs of BAs. The results of the structural parameters and elastic properties in B3 structure are in good agreement with the available theoretical and experimental values.  相似文献   

16.
The effect of hydrostatic pressure on the structures of HfN at 0 K was investigated by using the projector augmented wave (PAW) within the Perdew–Burke–Ernzerhof (PBE) form of the generalized gradient approximation (GGA). The transition pressure between NaCl (B1) and CsCl (B2) structures is predicted to be 277.3 GPa. This value is consistent with that reported by Kroll, while in contrast to the results obtained by Ojha et al. and Meenaatci et al. Moreover, the elastic properties of B1-HfN and B2-HfN under high pressures are successfully obtained. It is found that the elastic constants, bulk modulus B, shear modulus G, compressional and shear wave velocities increase monotonically with increasing pressure. The Debye temperature Θ calculated from the elastic constants of HfN is in good agreement with the experimental values. The anisotropies of B1-HfN and B2-HfN at zero pressure have also been discussed.  相似文献   

17.
We report local density functional calculations using the full potential linear muffin-tin orbital (FP-LMTO) method for binary platinum nitride (PtN), in five different crystal structures, the rock salt (B1), zinc-blende (B3), wurtzite (B4), nickel arsenide (B8), and PbS (B10) phases. The ground state properties such as the equilibrium lattice constant, elastic constants, the bulk modulus and its pressure derivative of PtN in these phases are determined and compared with the other available experimental and theoretical works.Our calculations confirm in the B3 structure that PtN is found to be mechanically stable with a large bulk modulus B=232.45 GPa and at a sufficiently high pressure the B81 structure would be favoured.The theoretical transition pressure from zinc blende (B3) to NiAs (B81), zinc-blende (B3) to rock-salt (B1) and zinc-blende (B3) to PbO (B10) is determined to be 9.10 GPa, 9.85 GPa and 69.35 GPa, respectively. Our calculation shows also in five different structures for PtN a high bulk modulus is a good indicator of a hard material.  相似文献   

18.
Based on density functional theory, we have studied the structural stability, elastic, mechanical, and lattice dynamical properties of BeB2, NaB2, and CaB2 compounds in AlB2, OsB2, and ReB2 structures, respectively. Generalized gradient approximation has been used for modeling exchange-correlation effects. Our calculations indicate that ReB2, AlB2, and OsB2 structures are energetically the most stable for BeB2, NaB2, and CaB2 compounds, respectively. The results show that these structures are both mechanically and dynamically stable. The bulk modulus, elastic constants, shear modulus, Young’s modulus, Poisson’s ratio, Debye temperature, sound velocities, and anisotropic factors are also calculated and discussed. Furthermore, the phonon dispersion curves and corresponding phonon density of states are presented. Our structural and some other results are in agreement with the available experimental and theoretical data.  相似文献   

19.
The elastic phase transitions of cubic metals at high pressures are investigated within the framework of Landau theory. It is shown that at pressures comparable with the magnitude of the bulk modulus the phase transition is connected with the loss of stability relative to uniform deformation of the crystalline lattice. Discontinuity of the order parameter at the transition point and its equilibrium value are expressed through the second-?to fourth-order elastic constants. The second-,third-?and fourth-order elastic constants and phonon dispersion curves of vanadium under hydrostatic pressure are obtained by first-principles calculations. Structural transformation in vanadium under pressure is studied using the obtained results. It is shown that the experimentally observed at P?≈?69?GPa phase transition in vanadium is the first-order phase transition close to a second-order phase transition.  相似文献   

20.
Ab initio calculations of structural, electronic, elastic, and phonon properties of TiRu3 and TiOs3 compounds have been studied using the density functional theory (DFT) within the generalized gradient approximation (GGA). The basic structural properties such as lattice constants, bulk modulus and pressure derivative of bulk modulus of these compounds were studied and compared with the previous theoretical data. Electronic band structures and partial densities of states for TiRu3 and TiOs3 compounds were computed and analyzed. The electronic band calculations showed that the TiRu3 and TiOs3 compounds have metallic nature. Phonon spectra, their total and projected densities of states for these compounds were computed by using a linear-response method in the framework of the density functional perturbation theory. The specific heat capacities at a constant volume CV and Debye temperature of TiCr3 and TiOs3 compounds were also calculated and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号