首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
We examine the light scattering from wet aerosol particles whose core morphology is a random Gaussian sphere coated by different amounts of water. We compare the results with those calculated from a concentric-sphere particle and from a homogeneous-sphere particle whose refractive index is determined from the Bruggeman mixing rule. In nearly all cases the differences between those of the Gaussian-core and the concentric-sphere particles are small. The most significant differences are seen in calculations of the asymmetry parameters and the intensity and polarization phase functions. The results of the homogeneous-sphere particles vary significantly from those of the Gaussian-core particles, typically an order of magnitude greater than for the concentric-sphere particles. It is not uncommon to see differences of 10% in the efficiencies of large, homogeneous-sphere particles; whereas, in the intensity and polarization phase functions, differences of several tens of percent are not uncommon.  相似文献   

2.
We study scattering of light by wavelength-scale spherical, cubic, and spheroidal particles as well as clusters of spherical particles for equal-volume-sphere size parameters 4≤x≤10 and refractive indices 1.1≤m≤2.0. Such particles exhibit three specific features in the regime of backscattering: first, the intensity shows a backscattering peak; second, the degree of linear polarization for unpolarized incident light is negative; and, third, the depolarization ratio is double-lobed. We find that the overall characteristics of the scattering-matrix elements can be explained by an internal field composed of waves propagating in opposite directions near the particle perimeter and forming standing waves, as well as a wave propagating forward with the wavelength of the internal medium. When moving from the central axis of the particle toward its perimeter, the internal field changes from a forward-propagating wave with a wavelength dictated by the particle refractive index toward a standing wave with an apparent wavelength of the surrounding medium. The mapping of the internal field to the scattered far field is like an interference dial where rotation of the dial by a quarter of a wavelength on the particle perimeter results in a change from a destructive to constructive interference feature in the angular patterns (or vice versa). The dial is a manifestation of a well-known rule of thumb: the number of maxima or minima in the scattering-matrix elements is given by the size parameter. We explain the backscattering peak as deriving from the backward-propagating internal wave near the particle perimeter. Negative polarization follows from the spatial asymmetry of the internal fields: inside the particle, the fields are amplified near the central plane perpendicular to the polarization state of incident light, resulting in more pronounced interference effects for the perpendicular polarization than for the parallel polarization. The double-lobe feature in the depolarization results from the same internal-field structure with leading cross-polarized fields located slightly different from the copolarized fields. We discuss practical implications of these findings for the retrieval of particle sizes, shapes, and refractive indices from observations and laboratory experiments.  相似文献   

3.
胡帅  高太长  刘磊  易红亮  贲勋 《物理学报》2015,64(9):94201-094201
非球形气溶胶是影响辐射传输的重要因素. 系统给出了矢量辐射传输Monte Carlo模型, 并验证了其准确度; 考虑入射光偏振态, 讨论了不同方向漫射光Stokes矢量对气溶胶形状的敏感性; 分析了气溶胶形状、入射光偏振状态对光波退偏振度、透过率及反射率的影响. 模拟仿真结果表明, 对于不同偏振态的入射光, 不同方向的Stokes矢量对气溶胶形状变化的灵敏程度并不一致, 而在天顶角0°方向区域,Q, UV分量对形状的灵敏程度普遍不高; 气溶胶形状对反射漫射光退偏程度的影响强于透射漫射光, 入射光偏振态不同, 漫射光退偏程度也存在较大差异. 气溶胶形状对光波整体透过率与反射率影响显著, 且该影响随传播距离增大而增大; 入射光偏振态对透过率与反射率影响相对较小, 与自然光相比, 水平偏振光透过率略偏小, 反射率略偏大, 垂直偏振光反之, 圆偏振光与自然光的模拟结果相当.  相似文献   

4.
Small particle light scattering can produce light with polarization characteristics different from those of the incident beam. An analytical solution to the scattering by a spheroid with inclusion for an on-axis polarized Gaussian beam incidence is provided within the generalized Lorenz-Mie theory framework. The shapes of the inclusion can be spherical, confocal spheroid, or non-confocal spheroid. The Muller scattering matrix elements are computed for plane wave incidence or Gaussian light beam incidence. The effect of the size and shape of the inclusion or the coating on the polarized Oaussian light scattering characteristics by a spheroidal water coating aerosol Darticle are commlted and a,nalvzed.  相似文献   

5.
Scattering of microwaves by an ensemble of nonspherical ice particles is studied using a scattering model based on a second-order perturbation series at 5.6 GHz (C-band). Particle shapes are defined using a Gaussian random sphere geometry. Particle inhomogeneity is taken into account using three different effective-medium approximations: Maxwell–Garnett, Bruggeman, and Coherent Potential mixing rules. By systematically varying particle size, liquid water content, Gaussian shape parameters, and internal structure, it is found that liquid water content is the most important factor for the co-polarized backscattering; the shape is relatively unimportant. For depolarized backscattering, the shape is of fundamental importance, although the other factors are significant too. Surprisingly, the type of nonsphericity is found to be important for depolarization even for scatterers that are in the Rayleigh region: elongated targets depolarize clearly stronger than more irregular shapes. This finding seems not to be strongly size dependent, at least for size parameters from 0.0059 to 0.47, and indicates that the accurate modeling of shape is important for polarization quantities even in the Rayleigh region.  相似文献   

6.
We present the results of our experimental investigation of light scattering by polydisperse colloids of diamond and graphite. The scattering is studied at a random orientation of particles and in an external radiofrequency electric field, which orients particles along the strength. The average dimensions of particles in both colloids are close to each other and comparable with the wavelength of the incident light. The shape of particles and the optical and electrooptical properties of diamond and graphite colloids are significantly different. We analyze the polarization components of scattered light energy when the light incident on the colloids is linearly polarized. We show that the quadrupole light scattering by isotropic diamond particles has the main effect on angular dependences of depolarization of scattered light. For light scattering by anisotropic graphite particles, the depolarization of scattered light is mainly determined by a particular feature of the dipole scattering of particles. It is shown that, in both colloids, the orientational order of particles considerably reduces the depolarization of light scattered by particles. We show that relative changes in the intensity and depolarization of scattered light, which depend on the scattering angle and polarization direction of light, as well as on the parameters of particles, can be used as a measure of electrooptical effects observed in colloids.  相似文献   

7.
微小颗粒的光散射数值模拟   总被引:2,自引:2,他引:0       下载免费PDF全文
简单介绍了以经典Mie理论为基础的光散射测量技术在颗粒直径和颗粒浓度测量中广泛的应用。分别以Mie理论和离散偶极子近似理论(DDA)为基础, 用数值计算方法分析了球型颗粒的光散射特性,给出了微小颗粒对平行入射光散射的强度函数和散射偏振度的数值计算方法。得到了强度函数和偏振度随相关物理参量变化的三维图,为微小颗粒散射研究提供了一种三维视图。计算结果表明:当尺度参量x<4时,2种方法所得结果差异不大;随尺度参量增大,2种方法所得结果出现较大差异。与经典Mie理论相比,由于离散偶极子近似理论可以解决各种形状的颗粒散射问题,其应用前景更广泛。  相似文献   

8.
非球形椭球粒子参数变化对光偏振特性的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
张肃  彭杰  战俊彤  付强  段锦  姜会林 《物理学报》2016,65(6):64205-064205
针对自然界中多数沙尘、烟煤粒子的非球形问题, 在球形粒子偏振特性的基础上, 进一步研究非球形椭球粒子的折射率、有效半径、粒子形状等参数变化对光偏振特性的影响, 采用基于T矩阵的非球形粒子仿真方法, 模拟非偏振光经椭球粒子传输后光的偏振特性及其与球形粒子间的差异, 并以实际沙尘、海洋、烟煤三种气溶胶粒子为例说明结果的正确性. 结果表明: 当折射率实部越小, 虚部越大时, 球形粒子与非球形粒子的偏振差异越不明显; 当粒子有效半径增加时, 球形粒子偏振度的变化比非球形粒子更为明显, 且最大值分别出现在散射角为150°和120°的位置; 当粒子形状不同时, 不同形状椭球及球形粒子的差异在散射角小于60° 时并不明显, 且当椭球粒子纵横比互为倒数时, 两种粒子的偏振特性近似相同. 通过以上分析可知, 在光传输过程中, 椭球粒子多数情况下无法被近似为球形粒子进行计算.  相似文献   

9.
We analyze both the intensity and linear polarization of cosmic dust particles by using the physically exact superposition T-matrix method in a fixed orientation for various aggregates of spheres and DDA for the aggregates of Gaussian random spheres. We study both the spherical geometry (in cometary comae) and cylindrical slabs (for regoliths) up to 2000 monomers with size parameters less than ∼3. It is straightforward to produce the observed linear polarization in both geometries while the typically convex and strong opposition spike seems to require wide regolith geometries. The dependence of various parameters on light scattering has also been studied in a rather detailed form. In applications to the cometary polarization we can fit the data in six colors from UV to the J band at a very good accuracy. We, however, emphasize that we do not claim our model to be unique. The most important parameters here are the refractive index and the size distribution of submicron particles. Rest of the parameters has only a minor role. We also found that it is critically important to use several realizations from any assumed particle geometry model because corresponding scattering characteristics can vary quite a lot.  相似文献   

10.
We address the question if and how observations of scattered intensity and polarisation can be employed for retrieving particle shape information beyond a simple classification into spherical and nonspherical particles. To this end, we perform several numerical experiments, in which we attempt to retrieve shape information of complex particles with a simple nonspherical particle model based on homogeneous spheroids. The discrete dipole approximation is used to compute reference phase matrices for a cube, a Gaussian random sphere, and a porous oblate and prolate spheroid as a function of size parameter. Phase matrices for the model particles, homogeneous spheroids, are computed with the T-matrix method. By assuming that the refractive index and the size distribution is known, an optimal shape distribution of model particles is sought that best matches the reference phase matrix. Both the goodness of fit and the optimal shape distribution are analysed. It is found that the phase matrices of cubes and Gaussian random spheres are well reproduced by the spheroidal particle model, while the porous spheroids prove to be challenging. The “retrieved” shape distributions, however, do not correlate well with the shape of the target particle even when the phase matrix is closely reproduced. Rather, they tend to exaggerate the aspect ratio and always include multiple spheroids. A most likely explanation why spheroids succeed in mimicking phase matrices of more irregularly shaped particles, even if their shape distributions display little similarity to those of the target particles, is that by varying the spheroids’ aspect ratio one covers a large range of different phase matrices. This often makes it possible to find a shape distribution of spheroids that matches the phase matrix of more complex particles.  相似文献   

11.
光源的偏振态对动态光散射颗粒测量结果的影响   总被引:1,自引:0,他引:1  
研究了在动态光散射纳米颗粒测量中,光源的偏振态对测量结果的影响。采用了粒径为100nm、体积浓度为0.5%的标准颗粒作为样品,使He-Ne激光通过起偏器得到0°~180°方向的偏振光,测量了散射光强、偏振度和粒径测量值的变化,计算了相应的粒径均值偏差和标准差,并将这一结果与无偏振He-Ne激光入射进行了比较。结果表明,当入射光为线偏振光时,偏振方向垂直于散射面时测量效果最好;另一方面,由于颗粒系散射迭加造成的散射光偏振度降低,使线偏振光源与无偏振光源产生的散射光偏振度无明显差别,证明在测量中可以使用无偏振He-Ne激光代替。  相似文献   

12.
We investigate to what extent the full Stokes scattering matrix of an ensemble of wavelength-sized particles with complex shapes can be modeled by employing an ensemble of simple model shapes, such as spheres, spheroids, and circular cylinders. We also examine to what extent such a simple-shape particle model can be used to retrieve meaningful shape information about the complex-shaped particle ensemble. More specifically, we compute the Stokes scattering matrix for ensembles of randomly oriented particles having several polyhedral prism geometries of different sizes and shape parameters. These ensembles serve as proxies for size-shape mixtures of particles containing several different shapes of higher geometrical complexity than the simple-shaped model particles we employ. We find that the phase function of the complex-shaped particle ensemble can be accurately modeled with a size distribution of volume-equivalent spheres. The diagonal elements of the scattering matrix are accurately reproduced with a size-shape mixture of spheroids. A model based on circular cylinders accurately fits the full scattering matrix including the off-diagonal elements. However, the modeling results provide us with only a rough estimate of the effective shape parameter of the complex-shaped particle ensemble to be modeled. They do not allow us to infer detailed information about the shape distribution of the complex-shaped particle ensemble.  相似文献   

13.
Xu M  Lax M  Alfano RR 《Optics letters》2003,28(3):179-181
The anomalous-diffraction theory (ADT) of extinction of light by soft particles is shown to be determined by a statistical distribution of the geometrical paths of individual rays inside the particles. Light extinction depends on the mean and the mean-squared geometrical paths of the rays. Analytical formulas for optical efficiencies from a Gaussian distribution of the geometrical paths of rays are derived. This Gaussian ray approximation reduces to the exact ADT in the intermediate case of light scattering for an arbitrary soft particle and describes well the extinction of light from a system of randomly oriented and (or) polydisperse particles. The implications for probing of the sizes and shapes of particles by light extinction are discussed.  相似文献   

14.
The depolarization of light in multiple-scattering media with large (larger than the light wavelength) inhomogeneities is considered. The polarization state of the scattered light is described in the principal-mode approximation. Using the Fokker-Planck model, the polarization and intensity distribution of light are calculated in the vicinity of an inhomogeneity in the shape of an absorbing half-plane. The results of the calculations agree with the experimental data on transmission of light through turbid media.  相似文献   

15.
Laser-induced desorption of metal atoms from the surface of small metal particles has been investigated as a function of the shape of the particles and the polarization of the incident laser light. The particles were supported on LiF, quartz or sapphire substrates. In a first set of experiments, the shape of the particles was determined by recording optical transmission spectra with s- and p-polarized light incident under an angle of typically 40° with respect to the surface normal. The metal particles turn out to be oblate, the ratio of the axes perpendicular and parallel to the substrate surface being on the order of 0.5. This ratio decreases with increasing particle size. Also, the particles change shape if the temperature is raised. In further experiments, s- and p-polarized light has been used to stimulate desorption of atoms via surface plasmon excitation. It is found that the desorption rate markedly depends on the polarization of the light. This is explained by excitation of the collective electron oscillation along different axes of the non-spherical particles.  相似文献   

16.
Background, current status, and future prospects are offered for “Light scattering by Gaussian random particles: Ray-optics approximation” [1]. The stochastic geometry of the random particle is called the Gaussian random sphere. The radial distance of the Gaussian sphere is lognormally distributed. Two logarithmic radial distances at a given great-circle angle apart relate to one another according to the covariance function. Sample Gaussian particles can be conveniently generated using a Legendre polynomial expansion for the covariance function and a spherical harmonics expansion for the logarithmic radial distance. The ray-optics approximation consists of the geometric-optics and forward-diffraction parts fully accounting for polarization. It is valid for particles much larger than the wavelength of incident light and with central phase differences much larger than unity. The numerical ray-tracing algorithms are general and, in principle, applicable computationally to arbitrarily shaped non-spherical particles.  相似文献   

17.
Multiple scattering of incoherent polarized light propagating through a random medium comprised of spheroidal Rayleigh particles is studied using Monte Carlo simulations. Two approaches are taken for the implementation of the simulation: the first uses individual realizations of particle orientation and the second, an accelerated method, averages over the particle orientation. These different methods produce results that are indistinguishable within statistical errors. The depolarization of light is examined in both transmission and backscatter for media comprised of spheroids of different polarizability ratios. In media containing spheroidal particles the depolarization is greater than that for spherical particles. Media containing prolate spheroids are more depolarizing than media comprising oblate particles of the same polarizability ratio. The extra depolarization due to asphericity is much less pronounced in the multiple scattering regime than for single scattering.  相似文献   

18.
紫外光与降雨粒子相互作用发生散射,散射光特性改变能够反映降雨粒子的相关物理特性(如粒子尺寸参数、浓度、形态),因此研究粒子的物理参数对散射光特性的影响对有效提高光谱法定量探测降水的精度有很大意义。由于雨滴在非球形降水粒子中具有代表性,以群雨滴粒子为例,采用T矩阵理论,利用紫外光直视和非直视单次散射模型,分析了入射光波长、群雨滴粒子形态、降雨强度、粒径大小与散射光强之间的关系。并用蒙特卡洛方法仿真分析了非球形群雨滴粒子在不同降雨强度和粒径下散射角与散射光强之间的关系,以及降雨环境中的风切变对紫外光散射特性的影响。通过理论及仿真分析,得到了不同群雨滴粒子形态下的路径损耗,不同降雨强度、风切变率和粒径下的散射光强分布。仿真结果表明:在紫外光直视与非直视通信方式下,降雨环境中的通信质量比晴天条件下的通信质量差,即路径损耗增大。当粒径分布已知时,随着降雨强度的增大,衰减系数增大,路径损耗增加,且直视通信方式的路径损耗比非直视降低7 dB左右。随着降雨强度、风切变率和粒子粒径的增大,散射光强曲线整体呈下降趋势,其中,降雨强度的变化对散射光强分布影响程度最大。相同通信距离时,不同降雨强度下的紫外光散射光强分布均随着散射角的增大而减小,当散射角继续增大到90°时,有效散射体体积逐渐减小,接收到的光子能量减小,暴雨中的散射光强衰减程度最大。相同降雨强度下考虑风切变时,相比较无风时的路径损耗增大5 dB左右。除此之外,还研究了椭球形和切比雪夫形粒子对紫外光散射光强的影响,结果表明当粒子粒径分布相同时,椭球形粒子的散射光强衰减较广义切比雪夫形粒子大。根据散射粒子的散射光强分布以及路径损耗能够区分雨滴粒子是否由相同粒径及形态组成,为粒子测量提供理论基础。分析降水中群雨滴粒子的光散射特性,为提高光谱法评估降水衰减的数值模拟方面提供理论依据,为光学技术在探测识别降水现象等气象领域的广泛应用提供了设计参考。  相似文献   

19.
Mineral dust aerosols have complex nonspherical shapes and varying composition. This study utilizes data on morphology (size and shape) and composition of dust particles to determine the extent to which the optical properties of real particles differ from those of spheres. A method for modeling the optical properties of complex particle mixtures is proposed. The method combines dust particle composition-shape-size (CSS) distributions reconstructed from the electron microscopy data, effective medium approximations and discrete dipole approximation. The method is used to compute optical characteristics of realistic dust mixtures representative of Saharan and Asian dust. We demonstrate that considered CSS distributions result in various differences in the extinction coefficient, single scattering albedo, asymmetry parameter and the scattering phase function relative to the volume-equivalent spheres and the mixtures of the randomly oriented oblate and prolate spheroids. Implications of these differences for radiation/climate modeling and remote sensing are discussed.  相似文献   

20.
碳酸钙微粒光致旋转的实验和理论研究   总被引:3,自引:0,他引:3  
雷铭  姚保利 《光子学报》2007,36(5):816-819
理论分析了由于光束轨道角动量和自旋角动量传递以及微粒的特殊形状导致微粒旋转的机理.实验建立了单光束激光光镊装置,不仅可以捕获并移动直径为微米量级的微小粒子,而且利用圆偏振光与微粒之间角动量的传递,实现了对具有双折射特性的碳酸钙微粒的光致旋转.实验中发现微粒的旋转不仅取决于光束的偏振态,还与微粒本身的形状有关,解释了实验中观察到的几种旋转现象.碳酸钙微粒旋转的最高转速达到12转/秒,转速与激光功率成正比.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号