首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the aid of differential phonon spectrometrics (DPS) and surface stress detection, we show that HI and NaI solvation transforms different fractions of the HO stretching phonons from the mode of ordinary water centred at ∼3200 to the mode of hydration shell at ∼3500 cm−1. Observations suggest that an addition of the H  H anti-hydrogen-bond to the Zundel notion, [H(H2O)2]+, would be necessary as the HO bond due H3O+ has a 4.0 eV energy, and the H  H fragilization disrupts the solution network and the surface stress. The I and Na+ ions form each a charge centre that aligns, stretches, and polarize the O:HO bond, resulting in shortening the HO bond and its phonon blue shift in the hydration shell or at the solute-solvent interface. The solute capabilities of bond-number-fraction transition follow: fH = 0, fNa  C, and fI  1  exp(−C/C0) toward saturation, with C being the solute molar concentration and C0 the decay constant. The fH = 0 evidences the non-polarizability of the H+ because of the H  H formation. The linear fNa(C) suggests the invariance of the Na+ hydration shell size because of the fully-screened cationic potential by the H2O dipoles in the hydration shell but the nonlinear fI(C) fingerprints the I  I interactions at higher concentrations. Concentration trend consistency between Jones–Dole’s viscosity and the fNaI(C) coefficient may evidence the same polarization origin of the solution viscosity and surface stress.  相似文献   

2.
Reaction of pentadienyl radicals (C5H7) with O2 has been studied by a combination of pulsed laser photolysis and photoionization mass spectrometry. These radicals could be generated either by the photolysis of 1,3-pentadiene or by the two-step reaction of carbon tetrachloride photolysis followed by the H-atom abstraction reaction of Cl atom with 1,4-pentadiene. The equilibrium between pentadienyl radicals, O2 and pentadienylperoxy radicals could be observed over the range 268–308 K. An analysis of the temporal signal of pentadienyl radicals was used to evaluate the equilibrium constant. Third-law analysis was used to evaluate the enthalpy change for the reaction C5H7 + O2 ⇌ C5H7O2. The observed CO bond energy in the C5H7O2 adduct was found to be 56.0 ± 2.2 kJ·mol–1, which is lower than the values of peroxy radicals formed with allyl and cyclohexenyl radicals which have an allylic resonance structure.  相似文献   

3.
《Tetrahedron: Asymmetry》2017,28(4):545-549
(Z)-3-XCH2-4-(C6H5)-3-buten-2-one enones (X = SCN, N3, SO2Me, OC6H5) were synthesized and submitted to biotransformations using whole Saccharomyces cerevisiae cells. The enone (X = SCN) produced (R)-4-(phenyl)-3-methylbutan-2-one (R)-6 with 93% ee and enones (X = N3, SO2Me, OC6H5) yielded a mixture of (R)-6 and the corresponding CC bond reduction products. Biotransformation with enone (X = N3) mediated by Saccharomyces cerevisiae resulted in two products via two different routes: (i) the ketone (R)-4-azido-3-benzylbutan-2-one in 28% yield and with >99% ee by CC bond reduction; (ii) ketone (R)-6 in 51% yield and with 95% ee via cascade reactions beginning with azido group displacement by the formal hydride from flavin mononucleotide in an SN2′ type reaction followed by reduction of the newly formed CC bond.  相似文献   

4.
The synthesis of new ruthenium-based catalysts applicable for both homogeneous and heterogeneous metathesis is described. Starting from the Hoveyda-Grubbs first generation (1) and the Hoveyda-Grubbs second generation (2) catalysts the homogeneous catalysts [RuCl((RO)3Si–C3H6–N(R′)–CO–C3F6–COO)(CH–o-O–iPr–C6H4)(SIMes)] (4: R = Et, R′ = H; 5: R = R′ = Me) (SIMes = 1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene) were prepared by substitution of one chloride ligand with trialkoxysilyl functionalized silver carboxylates (RO)3Si–C3H6–N(R′)–CO–C3F6–COOAg (3a: R = Et, R′ = H; 3b: R = R′ = Me). These homogeneous ruthenium-species are among a few known examples with mixed anionic ligands. Exchange of both chloride ligands afforded the catalysts [Ru((RO)3Si–C3H6–N(R′)–CO–C3F6–COO)(CH–o-O–iPr–C6H4)(SIMes)] (9: R = Et, R′ = H; 11: R = R′ = Me) and [Ru((RO)3Si–C3H6–N(R′)–CO–C3F6–COO)(CH–o-O–iPr–C6H4)(PCy3)] (8: R = Et, R′ = H; 10: R = R′ = Me). The reactivity of the new complexes was tested in homogeneous ring-closing metathesis (RCM) of N,N-diallyl-p-toluenesulfonamide and TONs of up to 5000 were achieved. Heterogeneous catalysts were obtained by reaction of 4, 5 and 811 with silica gel (SG-60). The resultant supported catalysts 4a, 5a, 8a11a showed reduced activity compared to their homogenous analogues, but rival the activity of similar heterogeneous systems.  相似文献   

5.
This review covers comprehensively the authors work during the present decade based on the chemistry of ionic organometallic hydrazines formulated as [(η5-Cp′)Fe(η6-Ar-NHNH2)]+PF6? (Cp′ = C5H5, C5Me5; Ar = aryl), that could be considered as a new generation of hydrazines owing to the changes provoked by the coordination of the 12-electron Cp′Fe+ fragment both in the electronic properties of the aromatic ring and in the hydrazine group. The reactivity of this new class of hydrazine is obviously centered, as in the classic Fischer's organohydrazines, Ar-NHNH2, on the –NHNH2 functional unit which is able to react with aldehydes, RCH(O) (R = alkyl, aryl, ferrocenyl (Fc)) and ketones, RR′CO (R = alkyl, aryl; R′ = alkyl, aryl, Fc), to afford ionic organometallic hydrazones. Likewise, the mixed-sandwich hydrazine precursors react with β-diketones Me–C(O)–CH2–C(O)–Me to afford ionic organometallic pyrazoles, and with cis-dioxo-molybdenum complexes, e.g. [MoO2(S2CNEt2)2], to afford ionic organometallic mono-organodiazenido complexes in which the two metal centers are connected by a μ,η61-aryldiazenido bridge. While some ionic hydrazones exhibit NLO properties, the ionic organodiazenido hybrid complexes exhibit charge-transfer features.  相似文献   

6.
The halide and phosphine free complex [(sIMes)(C5H4N-2-CO2)2RuCHPh] (7) (sIMes = 1,3-dimesitylimidazolidin-2-ylidene) bearing two bidentate 2-pyridinecarboxylato ligands was synthesized from the carbene complex [(sIMes)(PCy3)(Cl)2RuCHPh] (4) and the silver 2-pyridine-carboxylate (8). The molecular structure of the octahedral complex 7 reveals that the two carboxylato functions are coordinated in cis geometry to the ruthenium center. Catalyst 7 exhibits activity in ring-closing metathesis (RCM) reactions after addition of a cocatalyst (HCl) in dichloromethane as well as in methanol solution.  相似文献   

7.
The reaction of RuTp(COD)Cl (1) with PR3 (PR3 = PPh2iPr, PiPr3, PPh3) and propargylic alcohols HCCCPh2OH, HCCCFc2OH (Fc = ferrocenyl), and HCCC(Ph)MeOH has been studied.In the case of PR3 = PPh2iPr, PiPr3 and HCCCPh2OH, the 3-hydroxyvinylidene complexes RuTp(PPh2iPr)(CCHC(Ph)2OH)Cl (2a) and RuTp(PiPr3)(CCHC(Ph2)OH)Cl (2b) were isolated.With PR3 = PPh2iPr and HCCCFc2OH as well as with PR3 = PPh3 and HCCCPh2OH dehydration takes place affording the allenylidene complexes RuTp(PPh2iPr)(CCCFc2)Cl (3b) and RuTp(PPh3)(CCCPh2)Cl (3c).Similarly, with PPh2iPr and HCCC(Ph)MeOH rapid elimination of water results in the formation of the vinylvinylidene complex RuTp(PPh2iPr)(CCHC(Ph)CH2)Cl (4).In contrast to the reactions of the RuTp(PR3)Cl fragment with propargylic alcohols, with HCC(CH2)nOH (n = 2, 3, 4, 5) six-, and seven-membered cyclic oxycarbene complexes RuTp(PR3)(C4H6O)Cl (5), RuTp(PR3)(C5H8O)Cl (6), and RuTp(PR3)(C6H10O)Cl (7) are obtained. On the other hand, with 1-ethynylcyclohexanol the vinylvinylidene complex RuTp(PPh2iPr)(CCHC6H9)Cl (8) is formed. The reaction of the allenylidene complexes 3ac with acid has been investigated. Addition of CF3COOH to a solution of 3ac resulted in the reversible formation of the novel RuTp vinylcarbyne complexes [RuTp(PPh2iPr)(C–CHCPh2)Cl]+ (9a), [RuTp(PPh2iPr)(C–CHCFc2)Cl]+ (9b), and [RuTp(PPh3)(C–CHCPh2)Cl]+ (9c). The structures of 3a, 3b, and 5b have been determined by X-ray crystallography.  相似文献   

8.
The molecular structure of caffeine (3,7-dihydro-1,3,7-trimethyl-1H-purine-2,6-dione) was determined by means of gas electron diffraction. The nozzle temperature was 185 °C. The results of MP2 and B3LYP calculations with the 6-31G7 basis set were used as supporting information. These calculations predicted that caffeine has only one conformer and some of the methyl groups perform low frequency internal rotation. The electron diffraction data were analyzed on this basis. The determined structural parameters (rg and ∠α) of caffeine are as follows: <r(NC)ring> = 1.382(3) Å; r(CC) = 1.382(←) Å; r(CC) = 1.446(18) Å; r(CN) = 1.297(11) Å; <r(NCmethyl)> = 1.459(13) Å; <r(CO)> = 1.206(5) Å; <r(CH)> = 1.085(11) Å; ∠N1C2N3 = 116.5(11)°; ∠N3C4C5 = 121. 5(13)°; ∠C4C5C6 = 122.9(10)°; ∠C4C5N7 = 104.7(14)°; ∠N9–C4=C5 = 111.6(10)°; <∠NCHmethyl> = 108.5(28)°. Angle brackets denote average values; parenthesized values are the estimated limits of error (3σ) referring to the last significant digit; left arrow in parentheses means that this parameter is bound to the preceding one.  相似文献   

9.
Several multinuclear ferrocenyl–ethynyl complexes of formula [(η5-C5H5)(dppe)MII?CC–(fc)n–CC–MII(dppe)(η5-C5H5)] (fc = ferrocenyl; dppe = Ph2PCH2CH2PPh2; 1: MII = Ru2+, n = 1; 2: MII = Ru2+, n = 2; 3: MII = Ru2+, n = 3; 4: MII = Fe2+, n = 2; 5: MII = Fe2+, n = 3) were studied. Structural determinations of 2 and 4 confirm the ferrocenyl group directly linked to the ethynyl linkage which is linked to the pseudo-octahedral [(η5-C5H5)(dppe)M] metal center. Complexes of 15 undergo sequential reversible oxidation events from 0.0 V to 1.0 V referred to the Ag/AgCl electrode in anhydrous CH2Cl2 solution and the low-potential waves have been assigned to the end-capped metallic centers. The solid-state and solution-state electronic configurations in the resulting oxidation products of [1]+ and [2]2+ were characterized by IR, X-band EPR spectroscopy, and UV–Vis at room temperature and 77 K. In [1]+ and [2]2+, broad intervalence transition band near 1600 nm is assigned to the intervalence transition involving photo-induced electron transfer between the Ru3+ and Fe2+ metal centers, indicating the existence of strong metal-to-metal interaction. Application of Hush’s theoretical analysis of intervalence transition band to determine the nature and magnitude of the electronic coupling between the metal sites in complexes [1]+ and [2]2+ is also reported. Computational calculations reveal that the ferrocenyl–ethynyl-based orbitals do mix significantly with the (η5-C5H5)(dppe)Ru metallic orbitals. It clearly appears from this work that the ferrocenyl–ethynyl spacers strongly contribute in propagating electron delocalization.  相似文献   

10.
Mono-epoxied linoleic acid 9(12)-10(13)-monoepoxy 12(9)-octadecanoic acid (MEOA) was synthesized and optimized by immobilized Candida antarctica lipase (Novozym 435®) using D-optimal design. For optimizing the reaction, response surface methodology (RSM) was employed with four reaction variables such as the effect of amount of hydrogen peroxide (μL), amount of enzyme (w) and reaction time (h). At optimum conditions the experiment to obtain a higher yield% with a medium OOC% of MEOA was predicted at an amount of H2O2 μL of 15, Novozym 435® of 0.12 g and 7 h of reaction time. At this condition, the yield of MEOA was 82.14%, 4.91% of OOC and 66.65 mg/g of iodine value (IV). The observed value was reasonably close to the predicted value. Hydrogen peroxide was found to have the most significant effect on the degree of epoxidation OOC% and yield%. The epoxy ring opening (–C–O–C–) has been observed by Fourier Transform Infrared Spectroscopy (FTIR) at 820 cm−1 and the double band (–CC–) at 3009 cm−1. 1H NMR analyses confirmed that the oxirane ring (–CH–O–CH–) of MEOA at 2.92–3.12 ppm and four signals of methane (–CHCH–) was at 5.38–5.49 ppm while the 13C NMR showed the oxirane ring (–C–O–C–) at 54.59–57.29 ppm and the olefinic carbons at 124.02–132.89 ppm.  相似文献   

11.
Reaction of Mo(N-2,6-i-Pr2-C6H3)(CHCMe2C6H5)(OSO2CF3)(DME) (DME = 1,2-dimethoxyethane) with 2 equiv. of CF3COOK yields μ-(CF3COO)2-[Mo(N-2,6-i-Pr2-C6H3)(CHCMe2Ph)(OOCCF3)(Et2O)]2 (1). Compound 1 crystallizes in the orthorhombic space group Pna21 with a = 17.2485(3), b = 17.0336(3), c = 25.4031(5) Å, α = β = γ = 90°, V = 7463.5(2) Å3, Z = 4. In contrast to alkoxide based Schrock type initiators, 1 is virtually inactive in numerous metathesis reactions including ring-closing metathesis (RCM) and homo metathesis reactions, the cyclopolymerization of 1,6-heptadiynes, and even ring-opening metathesis polymerization (ROMP) of norborn-2-ene. However, addition of quinuclidine results in the in situ formation of 1a (Mo(N-2,6-i-Pr2-C6H3)(CHCMe2C6H5)(OOCCF3)2(quinuclidine) which displays moderate activity in ROMP, cyclopolymerization of 1,6-heptadiynes and RCM. Theoretical investigations carried out on the B3LYP/LACVP1 level provide substantial explanation for these findings.  相似文献   

12.
Methyl aziridine-2-carboxylate (MA2C) has been isolated in low temperature argon and xenon matrices and its structure and photochemistry were studied by FTIR spectroscopy. The reactant as well as the main photoproducts were characterized by comparison of their experimental IR spectra with spectra calculated at the DFT(B3LYP)/6-311++G(d,p) level. The theoretical calculations predicted the existence of two low energy MA2C conformers, differing by the orientation of the OCCN dihedral angle. Both conformers were identified in the studied matrices. Both narrowband tunable and broadband UV irradiations of matrix-isolated MA2C yielded isomerization photoproducts resulting from cleavage of the CC and weakest CN bonds of the aziridine ring. Irradiation with UV laser-light at λ = 235 nm resulted in the formation of the E isomer of methyl 2-(methylimino)-acetate (MMIA) and the Z isomer of methyl 3-iminopropanoate (M3IP). Subsequent irradiation at 290 nm led to observation of new bands resulting from E  Z isomerization of MMIA, while bands due to M3IP remained unchanged. The photoproduced Z isomer of MMIA could be subsequently consumed upon higher-wavelength irradiation (λ = 330 nm). The initially produced MMIA conformer was found to obey the nonequilibrium of excited rotamers (NEER) principle. No photoproducts resulting from the cleavage of the strongest CN bond of the MA2C aziridine ring were observed, nor that of methyl 3-aminoacrylate (M3AA), which could in principle be obtained also by cleavage of the weakest CN bond of the MA2C aziridine ring, but would imply a different H-atom migration simultaneous with the ring opening process. These results indicate that both the differential electronic characteristics of the CN bonds of substituted aziridine rings and the type of required H-atom migration are major factors in determining the specific photochemistries of substituted aziridines. Photofragmentation reactions of MA2C were also observed, through identification of various related products, e.g., acetonitrile, methanol, methane, CO and CO2.  相似文献   

13.
The photodissociations of acetophenone (C6H5COCH3) have been investigated by density functional theory (DFT) approach. The experimentally observed three photodissociation channels were clarified from the theoretical calculations on the related reactants, transition states (TSs), and products. Two of the three channels, C6H5COCH3  C6H5CO + CH3 and C6H5COCH3  C6H5 + CH3CO, were assigned to Norrish I reactions on the potential energy surfaces (PESs) of the lowest triplet state (T1). And, the first one is more favorable for lower barrier. The subsequent decompositions, C6H5CO  C6H5 + CO and CH3CO  CH3 + CO, were also studied by the similar calculations as above. The third photodissociation channel, C6H5COCH3  C6H5CH3 + CO, has been documented on the PESs of the ground state (S0). The third one played a minor role in the photodissociations of C6H5COCH3 for much higher barrier than the first two.  相似文献   

14.
Ali Barandov  Ulrich Abram 《Polyhedron》2009,28(6):1155-1159
Reactions of [ReOCl3(PPh3)2] with a potentially tridentate Schiff base derived from (2-formylphenyl)diphenylphosphine and 2-aminophenol, HL1P, (HL1P = Ph2PC6H4-2-HCN(C6H4-2-OH)) result in a rapid decomposition of the Schiff base and the formation of a large number of hitherto non-identified metal-containing species, while from similar reactions with the analogoue phosphine oxide HL1PO, (HL1PO = Ph2P(O)C6H4-2-HCN(C6H4-2-OH)) products of the compositions [ReOCl2(PPh3)(L1PO)] (1) and [Re(NC6H4-2-OH)Cl3(PPh3)2] (2) could be isolated. The structure of 2 is an experimental proof of the preceding, metal-induced cleavage of the C–N double bond. A subsequent reaction of the released 2-aminophenol forms the final phenylimido ligand.Reduction of HL1P with NaBH4 gives the phosphine amine H2L2P (H2L2 = Ph2P(C6H4-2-CH2NH(C6H4-2-OH))) in good yield. Reactions of H2L2P with common oxorhenium(V) complexes result in the formation of the stable rhenium(V) complex [ReOCl2(HL2P)] (3) with a facially coordinated HL2P? ligand.  相似文献   

15.
(Liquid + liquid) equilibrium data for ternary and quaternary systems containing n-hexane (C6H14), toluene (C7H8), m-xylene (C8H10), propanol (C3H8O), sulfolane (C4H8SO2), and water (H2O) were measured at T = 303.15 K. Phase diagrams of {w1C4H8SO2 + w2C7H8 + (1  w1  w2)C6H14}, {w1C4H8SO2 + w2C8H10 + (1  w1  w2)C6H14}, {w1C4H8SO2 + w2C3H8O + w3C7H8 + (1  w1  w2  w3)C6H14} and also systems containing water: {w1C4H8SO2 + w2H2O + w3C7H8 + (1  w1  w2  w3)C6H14} and {w1C4H8SO2 + w2H2O + w3C8H10 + (1  w1  w2  w3)C6H14} (w = mass fraction) were obtained at T = 303.15 K. The (liquid + liquid) equilibrium data of the systems were used to obtain interaction parameters in non-random two-liquid (NRTL) and universal quasi-chemical theory (UNIQUAC) activity coefficient models. These parameters can be used to predict equilibrium data of ternary and quaternary systems. The root mean square deviations (RMSDs) using these models were calculated and reported. The partition coefficients and the selectivity factors of solvents for extraction of toluene or m-xylene from n-hexane at T = 303.15 K are calculated and presented. The experimental selectivity factors of sulfolane for the system {w1C4H8SO2 + w2C7H8 + (1  w1  w2)C6H14} at T = 298.15 K and T = 323.15 K were taken from the literature and the influence of temperature on the extraction of toluene was also investigated. The phase diagrams for the ternary and quaternary systems including both the experimental and correlated tie lines are presented. The tie-line data of the studied systems were also correlated using the Hand equation and the correlation parameters are calculated and reported.  相似文献   

16.
3,6-Bis(2-thienyl)-1,2,4,5-tetrazine (bttz) reacts with trans-Pt(dmso)2(mes)2, mes = mesityl = 2,4,6-trimethylphenyl, under twofold cyclometallation to yield structurally characterized (μ-bttz-2H+)[Pt(dmso)(mes)]2 with uncoordinated thiophene sulfur atoms and bttz deprotonated in the 3,3′ positions. The structural features include cis-positioned carbanionic ligands, twisted mesityl substituents, S-coordinated dmso ligands with the SO bonds lying in the molecular plane, shortened inter-ring bonds, and rather short Pt–C bonds at 1.998(9)/2.00(1) Å (Pt–Cmes) and 1.985(9)/1.99(1) Å (Pt–Cbttz-2H+). Reversible reduction to {(μ-bttz-2H+)[Pt(dmso)(mes)]2}? causes a high-energy shift of the charge transfer bands and the appearance of an unresolved EPR signal at g = 1.9905.  相似文献   

17.
Various 1H,1H-perfluoroalkanes (RFCF2CH2F, RF = CF3, C2F5, C4F9, C5F11, C6F13, C10F21) were metallated using LDA in a THF solution of ZnCl2 at RT or −78 °C to produce the corresponding perfluoroalkenylzinc reagents (RFCFCFZnCl) in a cis-selective fashion. An increased yield (75–83%) and cis-selectivity (>89%) of the perfluoroalkenylzinc reagents were observed for metallation reactions performed at −78 °C. The cis selectivity was excellent for 1H,1H-perfluoroalkanes with larger RF groups (C4F9, C5F11, C6F13, >96%). The cis-perfluoroalkenylzinc [(E)-RFCFCFZnCl] reagents were coupled with aryl iodides to obtain cis-1-arylperfluoroalkenes [(Z)-RFCFCFAr] in 71–95% isolated yields. The cis-perfluoroalkenylzinc reagents upon iodinolysis produced cis-1-iodoperfluoroalkenes [(E)-RFCFCFI] in 68–70% isolated yield.  相似文献   

18.
The syntheses of [Au(CC-4-C6H4CC-4-C6H4NN-4-C6H4NO2)(PPh3)] (3), trans-[Ru(CC-4-C6H4-CC-4-C6H4NN-4-C6H4NO2)Cl(dppm)2] (4), [Ru(CC-4-C6H4CC-4-C6H4NN-4-C6H4NO2)(dppe)(η-C5Me5)] (5), and [Ni(CC-4-C6H4NN-4-C6H4NO2)(PPh3)(η-C5H5)] (6) are reported, together with a single-crystal X-ray diffraction study of 4. Quadratic nonlinearities for 36 and [Ru(CC-4-C6H4NO2)(dppe)(η-C5Me5)] (7) have been determined at 1.064 μm and 1.300 μm by the hyper-Rayleigh scattering (HRS) technique, comparison to related complexes revealing that β values increase on introduction of azo group and π-system lengthening.  相似文献   

19.
The RuC bond of the bis(iminophosphorano)methandiide-based ruthenium(II) carbene complexes [Ru(η6-p-cymene)(κ2-C,N-C[P{NP(O)(OR)2}Ph2]2)] (R = Et (1), Ph (2)) undergoes a C–C coupling process with isocyanides to afford ketenimine derivatives [Ru(η6-p-cymene)(κ3-C,C,N-C(CNR′)[P{NP(O)(OR)2}Ph2]2)] (R = Et, R′ = Bz (3a), 2,6-C6H3Me2 (3b), Cy (3c); R = Ph, R′ = Bz (4a), 2,6-C6H3Me2 (4b), Cy (4c)). Compounds 34ac represent the first examples of ketenimine–ruthenium complexes reported to date. Protonation of 34a with HBF4 · Et2O takes place selectively at the ketenimine nitrogen atom yielding the cationic derivatives [Ru(η6-p-cymene)(κ3-C,C,N-C(CNHBz)[P{NP(O)(OR)2}Ph2]2)][BF4] (R = Et (5a), Ph (6a)).  相似文献   

20.
A new amino acid ionic liquid (AAIL) [C3mim][Val] (1-propyl-3-methylimidazolium valine) was prepared by the neutralization method. Using the solution-reaction isoperibol calorimeter, molar solution enthalpies of the ionic liquid [C3mim][Val] with known amounts of water and with different concentrations in molality were measured at T = 298.15 K. In terms of standard addition method (SAM) and Archer’s method, the standard molar enthalpy of solution for [C3mim][Val] without water, ΔsHm = (−55.7 ± 0.4) kJ · mol−1, was obtained. The hydration enthalpy of the cation [C3mim]+, ΔH+ ([C3mim]+) = −226 kJ · mol−1, was estimated in terms of Glasser’s theory. Using the RD496-III heat conduction microcalorimeter, the molar enthalpies of dilution, ΔDHm(mi  mf), of aqueous [C3mim][Val] with various values of molality were measured. The values of ΔDHm(mi  mf) were fitted to Pitzer’s ion-interaction model and the values of apparent relative molar enthalpy, φL, calculated using Pitzer’s ion-interaction model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号