首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silver-doped ZnO films were grown on glass substrates by RF reactive magnetron sputtering. The as-grown ZnO:Ag film is insulating but behaves as p-type conduction with a resistivity of 152 Ω cm, a carrier concentration of 2.24×1016 cm?3 and a Hall mobility of 1.83 cm2/V s after annealing in O2 atmosphere at 600 °C for 1 h. The influence of post-annealing temperature and ambience on the electrical, structural and optical properties of the films was investigated.  相似文献   

2.
In this paper, a shift in the photoluminescence (PL) peak from blue to near-infrared region was observed in the Si+-implanted 400-nm-thick SiO2 films with the rapid thermal annealing (RTA) method only. As the Si+-fluence was 1×1016 ions/cm2, a blue band was observed in the films after RTA at 1050 °C for 5 s in dry-N2 atmosphere; then, the band shifted from blue to orange upon increasing the holding temperature of RTA to 1250 °C in the films after the isochronal RTA in dry N2. Furthermore, while the fluence was increased to 3×11016 ions/cm2 and the holding temperature was at the same range between 1050 and 1250 °C, the PL peak occurred between red and near-infrared regions. Although the RTA and conventional thermal annealing (CTA) methods produce a similar mechanism, the CTA method needs a much longer annealing-time and a higher Si+-implanted dose than the RTA method for producing the same shift and intensity of PL peak from the as-implanted sample. Therefore, the RTA method can produce the mechanism in the Si+-implanted sample with the PL energy between blue and near-infrared band in place of the CTA method.  相似文献   

3.
Nanopatterned sapphire substrates were fabricated by annealing of patterned Al thin films. Square-patterned Al thin films with the diagonal length of 600 nm, period of 1 um and height of ~200 nm were obtained by the Laser Interference Lithography and Reactive Ion Etching. Patterned Al thin films were subsequently subjected to dual stage annealing due to the melting temperature of Al thin films (660 °C). The first comprised a low temperature oxidation anneal. The hillocks formation on Al thin films was minimized with an oxidation annealing at 450 °C for 24 h. The little change in the morphology of patterned Al thin films was observed at 450 °C for 24 h. This was followed by a high temperature annealing to induce growth of the underlying sapphire single crystal to consume the oxide layer. The SEM results show the patterns were retained on sapphire substrates after high temperature annealing at less than 1200 °C. The XRD and Raman results reveal that the orientation of island patterns by dual stage annealing of patterned Al thin films for 24 h at 450 °C, and 1 h at 1000 °C, was the same as that of the sapphire (0001) substrates.  相似文献   

4.
0.7BiFeO3-0.3PbTiO3 (BFPT7030) thin films were deposited on SiO2/Si substrates by sol-gel process. The influence of heating rate on the crystalline properties of BFPT7030 thin films were studied by X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). XRD patterns of the films showed that a pure perovskite phase exists in BFPT7030 films annealed by rapid thermal annealing (RTA) technique. SEM and AFM observations demonstrated that the BFPT7030 films annealed by RTA at 700 °C for 90 s with the heating rate of 1 °C s−1 could show a dense, crack-free surface morphology, and the films’ grains grow better than those of the films annealed by RTA at the same temperature with other heating rates. XPS results of the films indicated that the ratio of Fe3+:Fe2+ is about 21:10 and 9:5 for the films annealed by RTA at 700 °C for 90 s with the heating rate of 1 and 20 °C s−1, respectively. That means the higher the heating rate, the higher the concentration of Fe2+ in the BFPT7030 thin films.  相似文献   

5.
Amorphous ErSiO films have been fabricated on p-type Si (001) substrates using rf magnetron sputtering technique. X-ray diffraction, high-resolution transmission electron microscopy, and atomic force microscopy were employed to investigate the samples. It is found that ErSiO film exhibits a flat surface, a sharp interface and superior electrical properties after post-deposition annealing in O2 ambience for 30 min at 450°C. The effective dielectric constant of the film is measured to be 14.2, and the effective oxide thickness reaches 1.9 nm, with a low leakage current density of 1.1×10−4 A/cm2 at an electric field of 1 MV cm−1 after annealing at 450°C. The obtained characteristics make the amorphous ErSiO films a promising substitute for SiO2 as a high-k gate dielectric.  相似文献   

6.
Samples of p-type ZnO:N films were prepared on glass substrates by thermal oxidation of Zn3N2 precursor, which was produced by reactive magnetron sputtering with a metallic zinc target in Ar/N2 working gas. The microstructures and the electrical and optical properties of the samples were systematically investigated as a function of the annealing temperature. The results indicate that the annealing temperature has strong effects on the conductivity and photoluminescence (PL) properties of the obtained ZnO:N films. With an annealing temperature of 500 °C in oxygen flux, ZnO:N samples show the best p-type characteristics. The doping mechanism and the doping efficiency are briefly discussed based on the experimental results.  相似文献   

7.
Aluminum nitride nanorods were grown during rapid thermal annealing of multi-layered Al2S3 /BaS thin films. Depending on the thickness ratio between the BaS and Al2S3 layers, nanowires or straight nanorods were obtained. Typical dimensions for the nanorods were a diameter in the range of 50-100 nm and a length of 2-5 μm. The nanostructures are formed upon annealing at a relatively low temperature of 900 °C when aluminum evaporates from the thin film, but remains trapped between the thin film surface and the Si wafer, which is used as a support during the annealing. The nitrogen is provided by N2 gas flushed through the annealing chamber. High-resolution transmission electron microscopy showed crystalline, wurtzite-structured AlN nanorods. The growth mechanism in terms of thin film composition, annealing parameters and the role of catalysts is discussed.  相似文献   

8.
The influence of the local crystallographic orientation of the polycrystalline bottom platinum electrode on the crystallization of niobium pentoxide thin films during their rapid thermal annealing was investigated by X-ray diffraction, X-ray reflectivity and transmission electron microscopy. The Nb2O5 thin films under study were reactively sputtered in a mixed O2/Ar atmosphere and subsequently subjected to the annealing in argon atmosphere at temperatures ranging from 500 °C to 700 °C. The X-ray diffraction confirmed a transition from the amorphous niobium oxide to the crystalline orthorhombic Nb2O5 for temperatures between 500 °C and 600 °C. The X-ray reflectivity measurements showed that the crystallization process was accompanied by a continuous increase of the electron density in Nb2O5 and by a rapid increase of the surface roughness at 700 °C. It was further observed by transmission electron microscopy that Nb2O5 crystallizes selectively and that the crystalline domains of Nb2O5 possess a strong orientation relationship to the platinum from the bottom electrode. The orientation relationship $(\bar{1} 1 1)_{\mathrm{Pt}}\,{\parallel}\, (\bar{1} \bar{6}0)_{\mathrm{Nb}_{2}\mathrm{O}_{5}}$ was identified as the most beneficial one for crystallization of Nb2O5.  相似文献   

9.
Li1.3Al0.3Ti1.7(PO4)3 films were comparatively prepared by rapid thermal annealing (RTA) and conventional furnace annealing(CFA). The phase identification and surface morphology of the prepared films were characterized by X-ray diffraction and scanning electron microscopy. The electrochemical window, ionic conductivity, activation energy, and electronic conductivity were conducted by cyclic voltammetry, electrochemical impedance spectroscopy, and four-probe technique. The results show that the films prepared by RTA and CFA are homogenous and crack-free. The film prepared by RTA shows smaller grains and is denser than the one prepared by CFA. The electrochemical windows of the two films are beyond 2.4 V. The ionic conductivities of the films prepared by RTA and CFA are 2.7?×?10?6 S cm?1 and 1.4?×?10?6 S cm?1, respectively. The activation energy of the film prepared by RTA is 0.431 eV, which is slightly smaller than the one prepared by CFA. The electronic conductivity of the two films is about 10?10 S cm?1.  相似文献   

10.
We report on investigations of the precipitation of iron in block-cast multicrystalline silicon using the techniques of X-ray beam induced current, X-ray fluorescence microscopy and X-ray absorption microspectroscopy. The samples studied were intentionally contaminated with iron and annealed at temperatures between 850 and 1050 °C. Annealing at 950 °C was found to lead to well detectable iron precipitation inside the grains and at grain boundaries. Small only iron clusters were detected after the 850 °C anneal while no iron clusters were found after the 1050 °C treatment. X-ray absorption near edge structure analyses of the iron clusters revealed mostly iron silicide and in one case iron oxide. Under the given condition at the beamline, the detection sensitivity for iron was estimated to be 4×107 atoms, corresponding to a spherical FeSi2 particle of 40 nm radius.  相似文献   

11.
Zirconium silicate films with high thermal stability and good electrical properties have been prepared on n-Si(100) substrates and commercially available Pt-coated Si substrates to fabricate metal–insulator–metal (MIM) structures by the pulsed laser deposition (PLD) technique using a Zr0.69Si0.31O2- ceramic target. Rapid thermal annealing (RTA) in N2 was performed. X-ray diffraction indicated that the films annealed at 800 °C remained amorphous. Differential thermal analysis revealed that amorphous Zr silicate crystallized at 830 °C. X-ray photoelectron spectroscopy showed that RTA annealing of Zr silicate films at 900 °C led to phase separation. The dielectric constant has been determined to be about 18.6 at 1 MHz by measuring the Pt/Zr silicate/Pt MIM structure. The equivalent oxide thicknesses (EOTs) and the leakage-current densities of films with 6-nm physical thickness deposited in O2 and N2 ambient were investigated. An EOT of 1.65 nm and a leakage current of 31.4 mA/cm2 at 1-V gate voltage for the films prepared in N2 and RTA annealed in N2 at 800 °C were obtained. An amorphous Zr-rich Zr silicate film fabricated by PLD looks to be a promising candidate for future high-k gate-dielectric applications. PACS 77.55.+f; 81.15.Fg; 73.40.Qv  相似文献   

12.
SrBi2Ta2O9 (SBT) ferroelectric thin films with different preferred orientations were deposited by pulsed laser deposition (PLD). Several methods have been developed to control the preferred orientation of SBT thin films. For SBT films deposited directly on Pt/TiO2/SiO2/Si substrates and in situ crystallized at the deposition temperature, the substrate temperature has a significant impact on the orientation and the remnant polarization (Pr) of the films; a higher substrate temperature benefits the formation of (115) texture and larger grain size. The films deposited on Pt/TiO2/SiO2/Si substrates at 830 °C are (115)-oriented and exhibit 2Pr of 6 μC/cm2. (115)- and (200)-predominant films can be formed by using a La0.85Sr0.15CoO3 (LSCO) buffer layer or by annealing amorphous SBT films deposited on Pt/TiO2/SiO2/Si substrates at 450 °C using rapid thermal annealing (RTA). These films exhibit good electric properties; 2Pr of the films are up to 12 μC/cm2 and 17 μC/cm2, respectively. The much larger 2Pr of the films deposited on the LSCO buffer layer and of the films obtained by RTA than 2Pr of the films deposited on Pt/TiO2/SiO2/Si substrates at 830 °C is attributed to a stronger (200) texture. Received: 30 January 2001 / Accepted: 30 May 2001 / Published online: 25 July 2001  相似文献   

13.
A technique is presented for the passivation of porous silicon (PS) thin films via nitrogen based annealing at the lowest temperature ever reported. Annealing freshly anodized PS thin films at temperatures as low as 520  °C under N2 flow in a rapid thermal annealer produces films that show no change in refractive index when exposed to ambient conditions over 60 days. These films also exhibited chemical resistance by surviving a brief dip in both concentrated KOH and buffered HF. Unlike most other PS surface passivation methods, this technique causes negligible reduction in refractive index of the annealed PS thin films. Passivation only occurs when dangling bonds and mono-hydrides populate the PS surface, providing a path for thermal interactions with the N2 gas.  相似文献   

14.
Rapid thermal annealing (RTA) is a general approach to improve the crystallinity of thin solid films. In this study, we investigated the effects of RTA on the structural and electrical properties of Na-doped ZnMgO ?lms grown by pulsed laser deposition. X-ray diffraction (XRD) results showed that the crystallinity of the Na-doped ZnMgO ?lms was improved with RTA at 400-700 °C, and the grain size became larger as the annealing temperature increased. Moreover, room-temperature photoluminescence (PL) measurements demonstrated decent optical quality of the as-deposited and annealed Na-doped ZnMgO ?lms. Hall-effect measurements showed that the hole concentration increased from 4.9 × 1014 to 6.6 × 1015 cm−3 to 1.9 × 1017 to 8.3 × 1017 cm−3 while the resistivity and the Hall mobility decreased after the RTA treatments. The conduction type of the films converted from p to n when the annealing temperature is higher than 800 °C. Therefore a wide temperature window to obtain reasonable p-type Na-doped ZnMgO films by RTA is achieved. It is important because RTA is generally needed to obtain p-type Ohmic contact in the fabrication processes of light-emitting diodes (LEDs).  相似文献   

15.
We report highly transparent Ag-doped In2O3 (IAO) films with high work function for use as transparent anodes in organic solar cells (OSCs). The electrical, optical, structural, and morphological properties of IAO films and their work function were investigated as a function of the rapid thermal annealing (RTA) temperature. At an RTA temperature of 600 °C, the IAO film showed a sheet resistance of 23.12 Ohm/square, an optical transmittance of 79.28%, and a work function of 5.21 eV, similar to conventional Sn-doped In2O3 (ITO) films. The low resistivity of the IAO film was closely related to oxygen vacancies caused by Ag suboxide formation in the In2O3 matrix. A bulk-heterojunction OSC with the optimized IAO anode showed performance comparable to that of an OSC with a reference ITO anode, indicating that the IAO films is a promising anode material for use in OSCs.  相似文献   

16.
Indium tin oxide (ITO) thin films were prepared by pulsed laser deposition (PLD) on glass substrate at room temperature. Structural, optical, and electrical properties of these films were analyzed in order to investigate its dependence on oxygen pressure, and rapid thermal annealing (RTA) temperature. High quality ITO films with a low resistivity of 3.3 × 10−4 Ω cm and a transparency above 90% were able to be formed at an oxygen pressure of 2.0 Pa and an RTA temperature of 400 °C. A four-point probe method, X-ray diffraction (XRD), atomic force microscopy (AFM), and UV-NIR grating spectrometer are used to investigate the properties of ITO films.  相似文献   

17.
Nanostructured TiO2 thin films were deposited on quartz glass at room temperature by sol–gel dip coating method. The effects of annealing temperature between 200C to 1100C were investigated on the structural, morphological, and optical properties of these films. The X-ray diffraction results showed that nanostructured TiO2 thin film annealed at between 200C to 600C was amorphous transformed into the anatase phase at 700C, and further into rutile phase at 1000C. The crystallite size of TiO2 thin films was increased with increasing annealing temperature. From atomic force microscopy images it was confirmed that the microstructure of annealed thin films changed from column to nubbly. Besides, surface roughness of the thin films increases from 1.82 to 5.20 nm, and at the same time, average grain size as well grows up from about 39 to 313 nm with increase of the annealing temperature. The transmittance of the thin films annealed at 1000 and 1100C was reduced significantly in the wavelength range of about 300–700 nm due to the change of crystallite phase. Refractive index and optical high dielectric constant of the n-TiO2 thin films were increased with increasing annealing temperature, and the film thickness and the optical band gap of nanostructured TiO2 thin films were decreased.  相似文献   

18.
Pine-needle-shaped GaN nanorods have been successfully synthesized on Si(111) substrates by ammoniating Ga2O3/Nb films at 950 °C in a quartz tube. The products are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and field-emission transmission electron microscope (FETEM). The results show that the pine-needle-shaped nanorods have a pure hexagonal GaN wurtzite with a diameter ranging from 100 to 200 nm and a length up to several microns. The photoluminescence spectra (PL) measured at room temperature only exhibit a strong emission peak at 368 nm. Finally, the growth mechanism of GaN nanorods is also briefly explored.  相似文献   

19.
TiO2 thin film was deposited on non-heated Si(1 0 0) substrate by RF magnetron sputtering. The as-deposited films were annealed by a conventional thermal annealing (CTA) and rapid thermal annealing (RTA) at 700 and 800 °C, and the effects of annealing temperature and method on optical properties of studied films were investigated by measuring the optical band gaps and FT-IR spectra. And we also compared the XRD patterns of the studied samples. The as-deposited film showed a mixed structure of anatase and brookite. Only rutile structures were found in samples annealed above 800 °C by CTA, while there are no special peaks except the weak brookite B(2 3 2) peak for the sample annealed at (or above) 800 °C by RTA. FT-IR spectra show the broad peaks due to Ti-O vibration mode in the range of 590-620 cm−1 for the as-deposited film as well as samples annealed by both annealing methods at 700 °C. The studied samples all had the peaks from Si-O vibration mode, which seemed to be due to the reaction between TiO2 and Si substrate, and the intensities of these peaks increased with increasing of annealing temperature. The optical band gap of the as-deposited film was 3.29 eV but it varied from 3.39 to 3.43 eV as the annealing temperature increased from 700 to 800 °C in the samples annealed by CTA. However, it varied from 3.38 to 3.32 eV as the annealing temperature increased from 700 to 800 °C by RTA.  相似文献   

20.
We have investigated the effects of a NiCo interlayer on the electrical and thermal properties of nickel silicide as a function of the annealing temperature. For the interlayered samples, 3 nm-thick NiCo(10 at.% Co) films are electron-beam evaporated on Si substrates, on which 27 nm-thick Ni films are deposited without breaking the vacuum. It is shown that all the samples exhibit a distinctive increase in the sheet resistance at temperatures above 900 °C. However, the NiCo interlayer sample produces the lowest sheet resistance at 900 \circC. X-ray diffraction results show that the Ni only and NiCo interlayer samples produce NiSi and NiSi2 phases, while NiCo full samples give NiSi and Ni1−xCoxSi2 phases. Scanning electron microscopy results exhibit that for all the samples, the surfaces become degraded with numerous arbitrarily-shaped spots, corresponding to areas uncovered by the silicides. The areal fractions of the silicides for the Ni only, NiCo full, and NiCo interlayer samples are about 57%, 72%, and 81%, respectively. The temperature dependence of the electrical properties of the silicide samples is explained in terms of the formation of resistive phases and the agglomeration of the silicide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号