首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li Chen  Chunlei Yu  Dongbing He  Lili Hu  Wei Chen 《Journal of Non》2011,357(11-13):2286-2289
Transparent glass-ceramics were synthesized by heat-treatment of glass with a composition of 5La2O3–13.2MgO–28.8Al2O3–46SiO2–4.5TiO2–2.5ZrO2–0.15CoO (LMAS) (wt.%). The activation energy of crystallization and the Avrami parameter for the LMAS glass were determined from the DTA curves at different heating rates. The most two intense bands of Raman spectrum of initial glass at ~ 810 cm?1 and ~ 900 cm?1 were connected with the presence of [SiO4] and [TiO4] tetrahedral, respectively. After heat-treated at 700 °C/10 h+820 °C/8 h, the intensity of the band for [TiO4] tetrahedral weakened, while an intensive band at ~ 800 cm?1 for the Ti–O bond appeared. Other bands were characteristics of high-silicate network and x(MgTi2O5y(Al2TiO5) polycrystals. The changes reflected phase separation after heat-treatment of the initial glass. The strong absorption band of glass-ceramics centered at 580 nm can be assigned to 4A2(4F)→4T1(4P) and the broad absorption band at 1100–1700 nm to 4A2(4F)→4T1(4F) transitions of tetrahedral coordinated Co2+ ion. Two broad emission bands, one was around 660 nm, the other was from 800 nm to 1050 nm, of glass-ceramics correspond to the 4T1(4P)→4A2(4F) and 4T1(4P)→4T2(4F) transitions of tetrahedral coordinated Co2+ ions. The absorption and emission features clearly demonstrated that Co2+ ions were incorporated into nanocrystals and located in tetrahedral sites.  相似文献   

2.
Li Chen  Chunlei Yu  Lili Hu  Wei Chen 《Journal of Non》2011,357(19-20):3486-3489
Co2+-doped La2O3–MgO–Al2O3–SiO2 (LMAS) glass-ceramics was synthesized by conventional method. The microstructure of LMAS GCs heat-treated at 760 °C/12 h + 930 °C/4 h was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The spectroscopic properties of Co2+-doped LMAS GCs were studied by absorption spectrum, excitation spectrum, and temperature dependent luminescence spectra. XRD results revealed the sizes of MgAl2O4 crystalline phases are about 9.1 ± 1.5 nm. The three peaks in the visible absorption band of LMAS GCs at 549 nm, 585 nm and 626 nm are connected with the transitions from 4A2 level to 2A1/2T2(2G), 4T1(4P) and 2E/2T1(2G) levels, respectively, and excitations into them emit the radiation at around 666 nm. The luminescence intensity increased with temperature increasing from 10 K to 150 K, while it weakened with temperature increasing from 150 K to 350 K. These features were explained by the effects of two competing mechanisms.  相似文献   

3.
The new calcium aluminoborate glasses with the composition of CaO–Al2O3–B2O3–RE2O3 (RE = Dy and Tb) were synthesized and the luminescence of Dy3+ and Tb3+ was investigated. The results show that the emission intensity of Tb3+ ion was enhanced when introducing Dy3+ ion into CaO–Al2O3–B2O3–Tb2O3 glass due to the energy transfer processes between Dy3+ and Tb3+. The energy transfer efficiencies, transfer probabilities as well as donor–acceptor critical distances were also calculated. The energy transfer mechanism between Dy3+ and Tb3+ ions is electric dipole–dipole interaction, which can be concluded by both fluorescence decay and emission intensity ratio varieties.  相似文献   

4.
In an effort to design low-melting, durable, transparent glasses, two series of glasses have been prepared in the NaPO3–ZnO–Nb2O5–Al2O3 system with ZnO/Nb2O5 ratio of 2 and 1. The addition of ZnO and Nb2O5 to the sodium aluminophosphate matrix yields a linear increase of properties such as glass transition temperature, density, refractive index and elastic moduli. The chemical durability is also significantly, but nonlinearly, improved. The glass with the highest niobium concentration, 55NaPO3–20ZnO–20Nb2O5–5Al2O3 was found to have a dissolution rate of 4.5 × 10? 8 g cm? 2 min? 1, comparable to window glass. Structural models of the glasses were developed using Raman spectroscopy and nuclear magnetic resonance spectroscopy, and the models were correlated with the compositional dependence of the properties.  相似文献   

5.
A glass with the composition of 35Na2O–24Fe2O3–20B2O3–20SiO2–1ZnO (mol%) was melted, quenched, using a twin roller technique, and subsequently heat treated in the range 485–750 °C for 1–2 h. This led to the crystallization of magnetite as the sole or the major crystalline phase.Heat treatment at lower temperatures resulted in the crystallization of magnetite crystals 7–20 nm in diameter, whereas heat treatment at higher temperatures produced higher quantities of magnetite and much larger crystals. The room temperature magnetization and coercive force values were in the range of 6–57 emu g? 1 and 0–120 Oe, respectively for the heat treated glasses.  相似文献   

6.
7.
The glasses in the MnNbOF5–BaF2–5BiF3–ErF3 system were obtained and their thermal and optical properties were studied. The specialties of crystallization depending on system composition are showed. The glass structure is discussed based on results of the IR and Raman spectra study. During the studies of inelastic light scattering, there revealed a strong photoluminescence, produced by erbium emission, whose intensity depends not only on the erbium trifluoride content in glass, but also on the glass network structure.  相似文献   

8.
Glasses in the formulation close to BaSiO3–BaB2O4 eutectic compound are developed for sealing of intermediate-temperature (500–650 °C) solid oxide fuel cell (IT-SOFC). Thermal and microstructural analyses of the glasses with 0–10 mol% Al2O3 are also conducted. Detailed crystallization kinetics and interfacial stability of the glass in contact with yttria-stabilized zirconia (YSZ) and samaria-doped ceria (SDC) are investigated and compared. The results show that the formulation, 47BaO–21B2O3–27SiO2–5Al2O3 (G1A5), performs the best on glass forming ability (GFA) among all tested formulations, and shows matched thermal expansion and working temperature to CeO2-based electrolytes of IT-SOFC. Two major crystalline phases that precipitate from G1A5 above 750 °C are platy hexacelsian and BaSiO3 grains.  相似文献   

9.
The effect of the substitution of ZnO for TiO2 on the chemical durability of Bi2O3–SiO2–ZnO–B2O3 glass coatings in hot acidic medium (0.1 N H2SO4 at 80 °C) for different times was studied. The thick films produced by a screen-printing method and heat treated at 700 °C/5 min were analyzed by X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy. The glass from the Bi2O3–SiO2–ZnO–B2O3 system developed Zn2SiO4 and a glassy phase that were readily attacked by hot 0.1 N sulfuric acid, whereas the heat treated coating from the Bi2O3–SiO2–TiO2–ZnO–B2O3 system presented a finer microstructure with thin interconnected Bi4Ti3O12 crystals and a glassy phase more resistant to hot 0.1 N sulfuric acid attack etching.  相似文献   

10.
A novel Na2O–K2O–CaO–MgO–SrO–B2O3–P2O5 borophosphate glass fiber is prepared. The thermal properties including differential thermal analysis (DTA) and viscosity measurement of the glass were presented. The tensile strength of the glass fiber is measured. The reaction of the glass fibers in the SBF solution is characterized by XRD, FTIR and SEM. XRD and FTIR indicate that the carbonate hydroxyapatite has formed rapidly on the glass. Cell attachment, spreading and proliferation on the glass are determined by MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] assay method using Human osteosarcoma MG-63 cells. The bioactivity and biocompatibility of the glass fiber make it a good potential prospect in the field of tissue engineering.  相似文献   

11.
X.L. Duan  Y.C. Wu  F.P. Yu  D.R. Yuan 《Journal of Non》2008,354(40-41):4695-4697
Transparent rare-earth Eu3+-doped ZnO–Ga2O3–SiO2 nano-glass-ceramics were obtained by a sol–gel method. X-ray diffraction and transmission electron microscopy were used to characterize the as-synthesized materials. Results showed that ZnGa2O4 nanocrystals with the size of 5 nm were precipitated from ZnO–Ga2O3–SiO2 system and dispersed in the SiO2-based glass when the heat-treatment temperature was up to 800 °C. Photoluminescence characterization of Eu3+-doped ZnO–Ga2O3–SiO2 nano-glass-ceramics was carried out and the results show that the as-synthesized material display intense emission at 615 nm belonging to 5D0  7F2 transition.  相似文献   

12.
Direct electrical conductivity and dependencies of complex electrical modulus vs. temperature and frequency have been measured on glasses from the MnF2–ZnF2–NaPO3 system. These glasses are sensitive to atmospheric humidity and as a consequence, the electrical conductivity increases up to temperature of 50 °C. A hydrated layer is created by the effect of water and leads to the significant increase of the electrical conductivity in the case of 0MnF2–20ZnF2–80NaPO3 glass. This behavior is governed by Arrhenius relation where the values of activation energy are increasing and values of the electrical conductivity are decreasing with the amount of MnF2. Dielectric measurements show that a heterogeneous phase is formed in the bulk of glasses. This may be seen when plotting complex electrical modulus in the complex plane. The records made by the light microscope confirmed the occurrence of the other phase in the bulk of glasses.  相似文献   

13.
Glasses with composition xLi2O-(30 ? x)Na2O–10WO3–60B2O3 (where x = 0, 5, 10, 15, 20, 25 and 30 mol%) have been prepared using the melt quenching technique. In the present work, the mixed alkali effect (MAE) has been investigated in the above glass system through density and modulated DSC studies. The density and glass transition temperature of the present gasses varies non-linearly, the exhibiting the mixed alkali effect. From the optical absorption studies, the values of direct optical band gap, indirect optical band gap energy (Eo) and Urbach energy(ΔE) have been evaluated. The values of Eo and ΔE vary non-linearly with composition parameter, showing the mixed alkali effect. The electronic polarizability of oxide ions, optical basicity and the Yamashita–Kurosawa's interaction parameter have been examined to check the correlation among them and bond character. Based on good correlation among electronic polarizability of oxide ions, optical basicity and the Yamashita–Kurosawa's interaction parameter, the present Li2O–Na2O–WO3–B2O3 glasses were classified as normal ionic (basic) oxides.  相似文献   

14.
Crystallography Reports - The electron diffraction investigation of two-component phases in the systems MF2–RF3 (CaF2–ErF3, SrF2–LaF3) and components of the systems CaF2, SrF2,...  相似文献   

15.
Influence of single fluxes (10 wt.% B2O3), bi-component fluxes (4 wt.% B2O3 + 6 wt.% Na3AlF6), and complex fluxes (4 wt.% B2O3 + 4 wt.% Na3AlF6 + 2 wt.% Na2O) on the thermal kinetic parameters, microstructure, flexural strength and coefficient of thermal expansion (CTE) of Li2O–Al2O3–4SiO2 (LAS) glass–ceramics was investigated through differential thermal analysis (DTA), X-ray diffraction (XRD), and scanning electron microscope (SEM). The results showed that complex fluxes could efficiently decrease transition temperature (Tg) and crystallization temperature (Tp), and accelerate the formation of needle-like β-spodumene crystals which benefit high flexural strength. The homogeneous LAS glass–ceramic (sample C3) which has a high strength of 132.4 MPa and low CTE (100–650 °C) of 2.74 × 10? 6/°C is obtained by doping of the initial LAS glass by complex fluxes of 4 wt.% B2O3, 4 wt.% Na3AlF6, and 2 wt.% Na2O, nucleating at 630 °C/120 min and then crystallized at 780 °C/120 min. It is worthy of further investigation as a bonder of diamond composite material due to its outstanding prosperities.  相似文献   

16.
SiO2–B2O3 aerogels have been prepared by drying wet gels at a supercritical condition for ethanol in an autoclave. Aerogels have been nitrided for 6 h in flowing ammonia at the temperature of 1200 °C. It has been found that the amount of nitrogen incorporated in these aerogels always exceeds 20 wt%. This is a much higher value compared with the amount of nitrogen incorporated in a pure silica aerogel nitrided at the same conditions. The specific surface area of SiO2–B2O3 aerogels has been between 312 and 359 m2/g. After nitridation some shrinkage of aerogels has been observed and the surface area decreases about 20%. In FTIR spectra of SiO2–B2O3 aerogels a typical bands for SiO2 are observed. After nitridation a shift and broadening of 1100 cm?1 band to lower wavenumbers indicates that Si–N and B–N bonds are formed in nitrided aerogels.  相似文献   

17.
We report silver metal enhanced near-IR and infrared-to-visible upconversion luminescence in Tm3+ doped 70GeS2–10Ga2S3–20CsCl (in mol. %) glasses. The metal embedded glasses are prepared under controlled crystallization. Upon 808 nm excitation three fold enhancement of emissions is observed in the visible (446 nm, 496 nm, and 532 nm) and near infrared (1230 nm, 1450 nm and 1480 nm) regions. The possible mechanism responsible for the enhanced luminescence is discussed.  相似文献   

18.
New chalcohalide glasses from GeS2–In2S3–CsCl pseudo-ternary system were prepared using the conventional melt-quenching method and its glass-forming region has been determined. The differences ΔT (TP ? Tg) of partial glasses are large enough (>100 K) to permit the preparation of performs of considerable size. With the increased content of CsCl, the visible absorption edge (λvis) of these glasses indicates a distinct blue shift while a clear drop of their glass transition temperatures can be seen. The ultrafast non-linearity of partial glasses was measured using the Kerr shutter technique. The non-linear refractive index, n2, was estimated to be in the magnitude of 10?14 cm2/W. Widely transparent range, good glass-forming ability, higher χ(3) and large electronic ultrafast OKE response make these glasses the potential applications in current photonic fields.  相似文献   

19.
The electric properties of LiI containing chalcohalide glasses in the system Ga2S3–GeS2 were studied by means of impedance spectroscopy and potentiostatic chronoamperometry. Two sets of the samples were prepared by direct synthesis from elements and compounds in evacuated quartz ampoules. The prepared glasses were as follows: xLiI–xGa2S3–(100?2x)GeS2, x = 15, 20, 25 and 20LiI–xGa2S3–(80?x)GeS2, x = 0, 5, 10, 15 and 20. In the first set the concentration of LiI increased and the second set was prepared to study the influence of Ga2S3 on the properties of the glasses. Additional aim of this work was to compare the electric properties of LiI containing Ga2S3–GeS2 glasses with analogous AgI containing Ga2S3–GeS2 glasses recently studied by us. The conductivity of the LiI containing glasses in the Ga2S3–GeS2 system was higher and the activation energy was lower than in the analogous AgI containing system. The residual electronic (hole) conductivity remained similar in both systems being almost negligibly low. Raman spectroscopy proved the influence of LiI as well as Ga2S3 on glass structure, however interpretation of Raman spectra of these glasses is complicated due to small mass difference between gallium and germanium.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号