首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Using three electrode vacuum system for glow discharge of 5% SiH4 + 95% Ar gas mixture together with thermal evaporation of phosphorus or boric aced, the n- and p-type a-Si:H layers have been deposited. By co-evaporation of phosphorus or boric aced the conductivity of a-Si:H layers was changed in 10?11–10?3 Ω?1 cm?1 or 10?11 –10?8 Ω?1 cm?1 range, respectively. Blends of a-Si:H and tris-(8-hydroxyquinoline) aluminum (Alq3) have been vacuum-deposited by simultaneous glow discharge of 5% SiH4 + 95 % Ar gas mixture and thermal co-evaporation of Alq3. Photoluminescence spectrum of a-Si:H/Alq3 blend coincident with one of Alq3 was observed at room temperature.  相似文献   

2.
A roll-to-roll PECVD system for thin film silicon solar cells on steel foil has been developed by ECN in collaboration with Roth and Rau AG. It combines MW–PECVD for fast deposition of intrinsic Si and novel linear RF sources, which apply very mild deposition conditions, for the growth of doped Si layers. The RF and MW sources can be easily scaled up to deposition widths of up to 150 cm. Here, we report on n-type doping, achieved by RF–PECVD from a H2/SiH4/PH3 mixture in the reaction chamber. The best n-type a-Si:H layers showed Eact = 0.27 eV and σd = 2.7 × 10?3 S/cm. Also thin layers down to 20 nm were of device quality and were deposited at a rate of 0.4 Å/s. Furthermore, n-type μc-Si:H layers with thicknesses of 150 nm, with Eact = 0.034 eV and σd = 2 S/cm were grown. Good quality n-type μc-Si:H layers can be made for layer thicknesses down to 50 nm at a rate of 0.15 Å/s. To conclude, the novel RF source is well-suited for the growth of n-doped a-Si:H and μc-Si:H layers for roll-to-roll solar cell production.  相似文献   

3.
《Journal of Non》2006,352(9-20):964-967
We have studied structural and electronic properties of μc-Si:H films deposited from SiH4 + H2 and SiH4 + H2 + Ar gas mixtures. The use of Ar containing gas mixtures for depositions allows us to increase deposition rate by a factor of two and to obtain films with an important fraction of large grains in comparison with SiH4 + H2 gas mixtures. Electronic properties of fully crystallized films become more intrinsic with the increase of large grain fraction. Deposition of highly p- and n-doped μc-Si:H layers from the dopant/SiH4 + H2 gas mixture at a temperature of 175 °C is possible without any remarkable changes in crystallinity in comparison with undoped films deposited with the same discharge conditions.  相似文献   

4.
We have investigated the effect of Ar dilution on the deposition process of intrinsic nc-Si:H (hydrogenated nanocrystalline silicon) thin films used as active layers of top-gate TFTs, in order to improve the TFTs performances. The nc-Si:H films were deposited by plasma enhanced chemical vapor deposition (PECVD) at low temperature (165 °C) and the related TFTs were fabricated with a maximum process temperature of 200 °C. During the nc-Si:H films deposition, the SiH4 fraction and the total flow of the diluting gases Ar + H2 mixture was kept constant, H2 being substituted by Ar. We have pointed out the active role played by the metastable states of excited Ar atoms in both the dissociation of SiH4 and H2 by quenching reactions in the plasma. The role of the atomic hydrogen during the film deposition seems to be promoted by the addition of argon into the discharge, leading to an increase of the deposition rate by a factor of about three and an enhancement of the crystalline quality of the nc-Si:H films. This effect is maximized when the Ar fraction in the Ar + H2 gases mixture reaches 50%. The evolution with Ar addition of the carriers mobility of the related TFTs is closely connected to the evolution of the crystalline fraction of the intrinsic nc-Si:H film. Mobilities values as high as 8 cm2 V?1 s?1 are obtained at the Ar fraction of 50%. For higher Ar fractions, the fall of the mobility comes with a degradation of the IDVG transfer characteristics of the processed TFTs due to a degradation of the nc-Si:H films quality. OES measurements show that the evolution of the Hα intensity is closely connected to the evolution of the deposition rate, intrinsic films crystalline fraction and TFTs mobility, providing an interesting tool to monitor the TFTs performances.  相似文献   

5.
The electronic properties of a-Si:H vary with hydrogen passivation of dangling bond defects. It appears this effect is also operative in semiconducting amorphous hydrogenated boron carbide (a-B5C:H). Therefore, the ability to quantify the amount of hydrogen will be key to development of the materials science of a-B5C:H. The results of an initial investigation probing the ability to quickly correlate hydrogen concentration in a-B5C:H films with infrared spectroscopy are reported. a-B5C:H thin films were growth on Si (1 1 1) substrates by plasma-enhanced chemical vapor deposition (PECVD) using sublimed orthocarborane and argon as the precursor gas. Nuclear reaction analysis (NRA) was performed to quantify the atomic concentration of H in the a-B5C:H films. While the observed vibronic structure does not show stretches due to terminal C–H or bridging B–H–B, analysis of the terminal B–H stretch at ~2570 cm?1 gives a proportionality constant of A = 2 × 1022 cm?2. We conclude that the methods previously developed for correlating H concentration to infrared data in a-Si:H are similarly viable for a-B5C:H films.  相似文献   

6.
《Journal of Non》2006,352(9-20):896-900
In this study, employing a high-density, low-temperature SiH4–H2 mixture microwave plasma, we investigate the influence of source gas supply configuration on deposition rate and structural properties of microcrystalline silicon (μc-Si) films, and demonstrate the plasma parameters for fast deposition of highly crystallized μc-Si films with low defect density. A fast deposition rate of 65 Å/s has been achieved for a SiH4 concentration of 67% diluted in H2 with a high Raman crystallinity of Xc > 65% and a low defect density of (1–2) × 1016 cm−3 by adjusting source gas supply configuration and plasma conditions. A sufficient supply of deposition precursors, such as SiH3, as well as atomic hydrogen H on film growing surface is effective for the high-rate synthesis of highly crystallized μc-Si films, for the reduction in defect density, and for the improvement in film homogeneity and compactability. A preliminary result of p–i–n structure μc-Si thin-film solar cells using the resulting μc-Si films as an intrinsic absorption layer is presented.  相似文献   

7.
L. Korte  M. Schmidt 《Journal of Non》2008,354(19-25):2138-2143
A variant of photoelectron spectroscopy with near-UV light excitation was established and applied to an n-type doping series of ultra-thin a-Si:H layers (layer thickness ~10 nm). Using this technique, the position of the surface Fermi level EFs is obtained and the density of recombination active defect states in the a-Si:H band gap down to ~1015 states/cm3 can be detected. Defect densities are generally about one order of magnitude higher than in the bulk of thicker (several 100 nm) layers, and the minimum achievable distance of EFs from the conduction band is ~360 mV for doping with 104 ppm PH3. The optimum doping for the fabrication of solar cells is almost one order of magnitude lower. This discrepancy may be explained by enhanced recombination at the a-Si:H/c-Si interface at high doping levels, and in addition by an efficient recombination pathway where charge carriers tunnel from c-Si via a-Si:H band tail states into the a-Si:H and subsequently recombine at dangling bond states.  相似文献   

8.
The influence of oxygen and nitrogen impurities on the material properties of a-Si:H and μc-Si:H films and on the corresponding solar cell performances was studied. For intentional contamination of the i-layer the impurities were inserted by two contamination sources: (i) directly into the plasma through a leak at the chamber wall or (ii) into the gas supply line. The critical oxygen and nitrogen concentrations for silicon solar cells were determined as the lowest concentration of these impurities in the i-layer causing a deterioration of the cell performance. Similar critical concentrations for a-Si:H and μc-Si:H cells in the range of 4–6 × 1018 cm? 3 for nitrogen and 1–5 × 1019 cm? 3 for oxygen by applying a chamber leak are observed. Similar increase of conductivity with increasing impurity concentration in the a-Si:H and μc-Si:H films is found. A more detailed study shows that the critical oxygen concentration depends on the contamination source and the deposition parameters. For a-Si:H cells, the application of the gas pipe leak leads to an increased critical oxygen concentration to 2 × 1020 cm? 3. Such an effect was not observed for nitrogen. For μc-Si:H, a new deposition regime with reduced discharge power was found where the application of the gas pipe leak can also result in an increase of the oxygen concentration to 1 × 1020 cm? 3.  相似文献   

9.
《Journal of Non》1998,226(3):217-224
In this paper we measure microstructure and optical absorption edge of a-Si:H and silicon-rich a-SiNr:H films prepared at deposition rates ∼0.8 nm/s by radio frequency plasma enhanced chemical vapor deposition method from hydrogen diluted SiH4 and SiH4 + NH3 mixtures, respectively. Microstructure of films was studied by atomic force microscopy and infrared spectroscopy. Both a-Si:H and a-SiNr:H films are inhomogeneous on a scale of ∼50 nm and contain Si-rich islands with hydrogen (in a-Si:H) or hydrogen and nitrogen (in a-SiNr:H) collected at their boundaries. It was found that different atomic configurations of N and H determined from IR data should be attributed to such islands and their boundaries. It was established that the optical gap is determined by the concentration of hydrogen (in a-Si:H) or nitrogen (in a-SiNr:H) in the islands while it is insensitive to variations of content of these alloy atoms at island boundaries. These results are interpreted in terms of a quantum well model modified to take into account structure of alloy atoms.  相似文献   

10.
《Journal of Non》2007,353(13-15):1437-1440
Surface morphology and roughness of amorphous spin-coated As–S–Se chalcogenide thin films were determined using atomic force microscopy. Prepared films were coated from butylamine solutions with thicknesses d  100 nm and then annealed in a vacuum furnace at 45 °C and 90 °C for 1 h for their stabilization. The root mean square surface roughness analysis of surfaces of as-deposited spin-coated As–S–Se films indicated a very smooth film surface (with Rq values 0.42–0.45 ± 0.2 nm depending on composition). The nanoscale images of as-deposited films confirmed that surface of the films is created by domains with dimensions 20–40 nm, which corresponds to diameters of clusters found in solutions. The domain character of film surfaces gradually disappeared with increasing annealing temperature while the solvent was removed from the films. Middle-infrared transmission spectra recorded a decrease of intensities of vibration bands connected to N–H (at 3367 and 3292 cm−1) and C–H (at 2965, 2935 and 2880 cm−1) stretching vibrations. Temperature regions of solvent evaporation T = 60–90 °C and glass transformation temperatures Tg = 135–150 °C of spin-coated As–S–Se thin films were determined using a modulated differential scanning calorimetry.  相似文献   

11.
《Journal of Non》2006,352(9-20):1071-1074
We report radiation effects on intrinsic a-Si:H thin films subjected to a 1.5 MeV He4 beam for particle fluences up to 1016 cm−2. Photothermal deflection spectroscopy is used to obtain information on the sub-gap density of states. Photoconductivity detects changes in the μτ-product of the electrons. Steady-state photocarrier grating technique is used for measuring the ambipolar diffusion length and estimating the hole μτ-product. The 1.5 MeV He4 beam radiation results in pronounced changes in the a-Si:H absorption spectrum. Optical absorption due to deep defects increases with particle fluence by more than one order of magnitude. Electronic transport properties consistently degrade with increasing particle fluence and correlate with the density of radiation-induced defects.  相似文献   

12.
We report improvement in characteristics of hydrogenated amorphous silicon (a-Si:H ) p-i-n structured solar cells by high-pressure H2O vapor heat treatment. a-Si:H p-i-n solar cells were formed on glass substrates coated with textured SnO2 layer. P-, i-, and n-type a-Si:H layers were subsequently formed by plasma enhanced chemical vapor deposition. Finally an indium-tin-oxide layer was coated on the n-type a-Si:H surface. Heat treatment at 210 °C with 2 × 105 Pa H2O vapor for 1 h was applied to the a-Si:H p-i-n solar cells. Electrical characteristics were measured when samples were kept in dark and illuminated with light of AM 1.5 at 100 mW/cm2. The heat treatment with H2O vapor increased fill factor (FF) and the conversion efficiency from 0.54 and 7.7% (initial) to 0.57 and 8.4%, respectively. Marked improvement in solar cell characteristics was also observed in the case of a poor a-Si:H p-i-n solar cell. FF and the conversion efficiency were increased from 0.29 and 3.2% (initial) to 0.56 and 7.7%, respectively.  相似文献   

13.
《Journal of Non》2007,353(13-15):1474-1477
Se–Te alloys are an important system of chalcogenide glasses from application point of view. The incorporation of Sn additive alters the electrical properties of these alloys. The conductivity measurements have been done on the thin films of a-Se85−xTe15Snx (x = 0, 2, 4, 6 and 10 at.%) deposited using vacuum evaporation technique. Both dark (σd) and photoconductivity (σph) show a maximum for x = 6 at.% of Sn, which, decreases on further Sn addition to the binary Se–Te alloy. The dark activation energy (ΔEd) shows a minimum for x = 2 at.% of Sn, but increases on further Sn addition. There is a sharp decrease in photosensitivity (σph/σd) on Sn addition to Se85Te15 alloy. The charge carrier concentration (nσ) calculated with the help of dc conductivity measurements also show a maximum at x = 6 at.% of Sn. The results are explained on the basis of increase in the density of localized states present in the mobility gap on Sn incorporation.  相似文献   

14.
Hydrogenated polymorphous silicon (pm-Si:H) thin films have been deposited by plasma-enhanced chemical vapor deposition at high rate (8–10 Å/s), and a set of complementary techniques have been used to study transport, localized state distribution, and optical properties of these films, as well as the stability of these properties during light-soaking. We demonstrate that these high deposition rate pm-Si:H films have outstanding electronic properties, with, for example, ambipolar diffusion length (Ld) values up to 290 nm, and density of states at the Fermi level well below 1015 cm?3 eV?1. Consistent with these material studies, results on pm-Si:H PIN modules show no dependence of their initial efficiency on the increase of the deposition rate from 1 to 10 Å/s. Although there is some degradation after light-soaking, the electronic quality of the films is better than for degraded standard hydrogenated amorphous silicon (values of Ld up to 200 nm). This result is reflected in the light-soaked device characteristics.  相似文献   

15.
《Journal of Non》2006,352(9-20):928-932
Gas phase reactions amongst filament-generated radicals play a crucial role in growth and properties of films deposited by hot wire chemical vapor deposition (HWCVD) technology. Gas phase species of interest are SiH4, H2, Si, H, SiH3, SiH2 and SiH. Partial pressures of these species for different sets of deposition conditions have been determined from the standard Gibbs free energy data. Equilibrium concentrations of the film forming precursors have been determined. The effect of the various process parameters on the equilibrium concentration of the precursors has been studied. H, Si and SiH are found to be the dominant species in gas phase above a filament temperature of 2300 K. However SiH3 and SiH2 concentration peaks are between 1900 and 2300 K, of the filament temperature.  相似文献   

16.
We present experimental results for hydrogenated amorphous and microcrystalline silicon (a-Si:H and μc-Si:H) thin films deposited by PECVD while using a voltage waveform tailoring (VWT) technique to create an electrical asymmetry in the reactor. VWT dramatically modifies the mean ion bombardment energy (IBE) during growth, and we show that for a constant peak-to-peak excitation voltage (VPP), waveforms resembling “peaks” or “valleys” result in very different material properties. Using Raman scattering spectroscopy, we show that the crystallinity of the material depends strongly on the IBE, as controlled by VWT. A detailed examination of the Raman scattering spectra reveals that the narrow peak at 520 cm? 1 is disproportionately enhanced by lowering the IBE through the VWT technique. We examine this effect for a range of process parameters, varying the pressure, hydrogen–silane dilution ratio, and total flow of H2. In addition, the SiHX bonding in silicon thin films deposited using VWT is characterised for the first time, showing that the hydrogen bonding character is changed by the IBE. These results demonstrate the potential for VWT in controlling the IBE during thin film growth, thus ensuring that application-appropriate film densities and crystallinities are achieved, independent of the injected RF power.  相似文献   

17.
《Journal of Non》2007,353(44-46):4137-4142
Amorphous tungsten trioxide (a-WO3) thin films were prepared by thermal evaporation technique. The electrical conductivity and dielectric properties of the prepared films have been investigated in the frequency range from 100 Hz to 100 kHz and in the temperature range 293–393 K. In spite of the absence of the dielectric loss peaks, application of the dielectric modulus formulism gives a simple method for evaluating the activation energy of the dielectric relaxation. The frequency dependence of σ(ω) follows the Jonscher’s universal dynamic law with the relation σ(ω) = σdc + s, where s is the frequency exponent. The conductivity in the direct regime, σdc, is described by the small polaron model. The electrical conductivity and dielectric properties show that Hunt’s model is well adapted to a-WO3 films.  相似文献   

18.
This paper reports on the development of an amorphous silicon cell used in the top cell of Micromorph® tandem solar modules produced in the pilot line of Oerlikon Solar in Trübbach — Switzerland. Tuning of the process parameters used for PECVD deposition of the absorber layers such as process pressure, RF power density, SiH4/H2 ratio, and substrate temperature can result in significant improvement in the material quality of the absorber layer and therefore in the performance and light induced degradation of the a-Si cell. We have measured the single layer properties of different absorber layers by infrared spectroscopy and have found a strong correlation between both the microstructure factor R and the H-content bonded to Si and the stabilized efficiency or relative degradation of the a-Si cells containing the corresponding absorber layers. A combination of absorber layers with superior material quality, adapted p-doped and buffer layers and ZnO front and back contacts with enhanced light trapping have achieved record values for the conversion efficiency of industrial thin a-Si single junction cells and modules. Our results show initial efficiencies on test cells prepared on 1.4 m2 substrates of over 11%, an active area efficiency of 10.5% for a champion 1.4 m2 a-Si single junction module and an 8.7% stabilized conversion efficiency for an industrial 1.4 m2 a-Si single junction champion module.  相似文献   

19.
Ch. Mühlig  W. Triebel 《Journal of Non》2009,355(18-21):1080-1084
At 193 nm, weak stationary bulk absorption coefficients αstat in standard and experimental grade fused silica (type III) are measured in dependence on the laser fluence H and repetition rate f. The samples show non-linear increases αstat(H) for 0.2 ? H ? 5 mJ cm?2 pulse?1 (f = const.) and αstat(f) for 100 ? f ? 1000 Hz (H = const.). An absorption model, focussing on ArF laser induced E′ center generation and annealing, and the associated rate equations are applied to simulate the experimental data quantitatively. From the simulations, material parameters like the 2-photon absorption (TPA) coefficient, the E′ center absorption cross section σE and the hydrogen related E′ annealing rate are calculated. TPA coefficients values of 9.7 · 10?9 cm/W (standard grade material) and 1.4 · 10?8 cm/W (experimental grade material), E′ center cross sections of 4.5 · 10?18 and 3.6 · 10?18 cm2 and hydrogen annealing rates of 1.5 s?1 (standard grade) and 3.4 s?1 (experimental grade) are found.  相似文献   

20.
Transparent and conductive/semiconductive undoped indium oxide (InOx) thin films were deposited at room temperature. The deposition technique used is the radio frequency (rf) plasma enhanced reactive thermal evaporation (rf-PERTE) of indium (In) in the presence of oxygen. The influence of oxygen partial pressure on the properties of these films is presented. The oxygen partial pressure varied between 3 × 10?2 and 1.3 × 10?1 Pa. Undoped InOx films, 100 nm thick, deposited at the oxygen partial pressure of 6 × 10?2 Pa show a conductive behaviour, exhibit an average visible transmittance of 81%, a band gap around 2.7 eV and an electrical conductivity of about 1100 (Ω cm)?1. For oxygen pressures greater than 6 × 10?2 Pa, semiconductive films are obtained, maintaining the visible transmittance. Films deposited at lower pressures are conductive but dark. From XPS data, films deposited at an oxygen partial pressure of 6 × 10?2 Pa show the highest amount of oxygen in the film surface and the lowest ratio between oxygen in the oxide crystalline and amorphous phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号