首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper proposes a new concept of birefringence-based sensor using the entangled photon timing walk-off compensation. The superposition of nonlinear light known as four-wave mixing is introduced by the Kerr nonlinear effects type within the ring device. The possible two entangled photon pairs are randomly generated using the polarization control unit. Results obtained have shown that the entangled state walk-off of light traveling within the ring device can be compensated. This means the changes in walk-off parameters can be relatively measured to the changes in the applied physical parameters. The potential of using such a proposed system for birefringence-based sensor applications is plausible and discussed.  相似文献   

2.
Photon squeezing and self-pumping within a nonlinear microring GaAsInP/P resonator are modeled and simulated, based on practical, published device parameters. A slowly varying amplitude pulse is input to the system, with a pulse width of 20 ns, a wavelength of 1.55 µm and peak power of 100 mW. The nonlinear effect resulting from the photons within the nonlinear ring resonator can be increased by adding external nonlinear coupling where, in this case, two nonlinear side rings are provided. The Dirac approach is used to generate the squeezed photons within the system. Three different device structures have been investigated, which include an add-drop filter, and a modified add-drop filter with two inner and outer side ring coupling resonators, where the nonlinear four-wave mixing effect is introduced. By using the commercial Opti-wave and MATLAB programs (in which suitable parameters have been chosen), the balance between the creation and annihilation operators can form the squeezed photons, which can be seen at the edge and center rings. The results obtained have shown that the squeezed center photon optical path (between 0 and 1 nm can be obtained) can be useful for interferometry, photon sources, and security code and sensor applications.  相似文献   

3.
4.
Gas sensing for measurement of gas components, concentrations, and other parameters plays an important role in many fields. In this Letter, a micro-ring resonator laser used for gas sensing is experimentally demonstrated. The multi-quantumwells micro-ring laser based on whispering-gallery modes with an annular resonator and an output waveguide was fabricated. A single-mode laser with a wavelength of 1746.4 nm was fabricated for the first time, to the best of our knowledge,experimentally. The output power of 1.65 m W under 40 m A injection current was obtained with a side-mode suppression ratio over 33 d B.  相似文献   

5.
In this paper, we investigate the optical bistability induced by optical nonlinearity in a compact parallel array of micro-ring resonators with radius of 5 μm. Due to the nature of perfect light confinement in this structure, resonance and accumulation process in a ring resonator and optical nonlinear effects, are observable even at small optical power (a few milliwatts). Different optical applications such as all-optical switching, optical memory devices, logic gates and modulators are possible, due to optical bistability in a ring resonator. Using alternative semiconductor compounds, instead of silicon that have weak nonlinear optical properties, we improve the performance of ring-resonator based devices. Here we use a polymer cladding layer with negative thermo-optic coefficient. Using this structure we can eliminate the temperature created nonlinearity which is a very slow process. Therefore, the switching speed increases from a few MHz to several tens of GHz. By plotting the transfer function of the resonator, a hysteresis loop is observed in a few milliwatts. Although, using a ring resonator array the bandwidth reduces, however, the width of the hysteresis loop and resolution between both steady state increases.  相似文献   

6.
P.P. Yupapin  C. Sripakdee 《Optik》2010,121(5):446-451
We firstly analyze the thermal dissipation effects of the entangled photons generated by a nonlinear optical ring resonator. To obtain the corresponding equation of motion of the entangled photons generated by a four-wave mixing process within the system, we propose the Markov approximation to repel the reservoir operators. The system master equation in the interaction picture for both degenerate and non-degenerate cases is analyzed and obtained. The established system can be used to characterize the optimum entangled photons in some cases where the thermal dissipation effects may introduce noise into the system. In this work, the entangled photons can be generated into two forms, firstly, the two entangled photon states are generated and, the other, the four entangled photon states, can be easily obtained. Results obtained have shown that the optimum entangled photon in terms of entangled photon visibility can be compensated (i.e. unchanged) under thermal dissipation effects.  相似文献   

7.
Sumetsky M 《Optics letters》2007,32(17):2577-2579
The Q-factor of an optical resonance device determines the width of its transmission resonances. For this reason, in sensing applications of optical resonators, it is commonly assumed that the Q-factor fully determines resonator sensitivity. Practically, the latter is not exactly correct. In this Letter, the parameters responsible for the sensitivity of resonance devices (i.e., the steepness and the sharpness of the transmission resonance) are analyzed. It is shown that, for given intrinsic losses of a single ring resonator sensor, the slope of the resonance is largest if its extinction ratio is 9.5 dB, while the resonance is sharpest if its extinction ratio is 6 dB. For a sensor consisting of several identical ring resonators coupled to a bus waveguide, the largest slope and sharpness parameters correspond to the extinction ratios of ~9 dB and ~4.5 dB, respectively. The determined optimum parameters can be achieved by tuning the coupling between the resonator rings and the waveguide.  相似文献   

8.
Huizhen Zhang 《中国物理 B》2021,30(11):113303-113303
Chirality is ubiquitous in natural world. Although with similar physical and chemical properties, chiral enantiomers could play different roles in biochemical processes. Discrimination of chiral enantiomers is extremely important in biochemical, analytical chemistry, and pharmaceutical industries. Conventional chiroptical spectroscopic methods are disadvantageous at a limited detection sensitivity because of the weak signals of natural chiral molecules. Recently, superchiral fields were proposed to effectively enhance the interaction between light and molecules, allowing for ultrasensitive chiral detection. Intensive theoretical and experimental works have been devoted to generation of superchiral fields based on artificial nanostructures and their application in ultrasensitive chiral sensing. In this review, we present a survey on these works. We begin with the introduction of chiral properties of electromagnetic fields. Then, the optical chirality enhancement and ultrasensitive chiral detection based on chiral and achiral nanostructures are discussed respectively. Finally, we give a short summary and a perspective for the future ultrasensitive chiral sensing.  相似文献   

9.
P.P. Yupapin  P. Yabosdee 《Optik》2010,121(6):567-574
We first propose a concept of a new interferometric technique, where the ultra-narrow spectral width of light pulse generated by using the micro-ring resonators can be used to perform the ultra-high-resolution interferometer. Firstly, the SHG using micro-ring resonators is analyzed and described, Secondly, the increasing in optical path difference (OPD) depends on the full-width at half-maximum (FWHM) width of the generated pulse is discussed. Finally, the optimum entangled photon visibility can be formed the quantum interferometer where the measurement resolution of 10−5-10−7 in term of birefringence is achieved. The use of such systems for quantum interferometer, high-resolution interferometer and surface characterization are described.  相似文献   

10.
11.
王梦蛟  吴中堂  冯久超 《物理学报》2015,64(4):40503-040503
针对非线性自适应混沌信号去噪算法的参数优化问题, 考虑到最优滤波窗长受到不同因素的影响, 为提高该算法的自适应性, 提出一种滤波窗长自动最优化的判决准则. 依据混沌信号和噪声自相关函数的不同, 首先采用不同窗长对含噪混沌信号进行去噪, 然后计算每个窗长对应的残差自相关度(RAD), 最后通过对最小RAD所对应的窗长进行一定比例收缩实现窗长的最优化. 仿真结果表明, 该判决准则能够在不同条件下对滤波窗长进行有效的自动最优化, 提高了混沌信号去噪算法的自适应性.  相似文献   

12.
All-optical regeneration of 2 × 10-Gb/s RZ-OOK polarization-division-multiplexed (PDM) signals is demonstrated through a single polarization nonlinear loop mirror configuration. PDM signals with orthogonal polarization states are regenerated simultaneously and reassembled automatically. Up to 3.0-dB eye-diagram-based signal-to-noise-ratio (SNR) improvement is achieved for both channels with the input SNR of 6.7 dB. Such scheme is also capable of mitigating the polarization-mode-dispersion (PMD) effect for PDM signals in the presence of up to 6.3-ps DGD.  相似文献   

13.
We describe experimental studies of the dynamical behavior of a recently proposed electro-optic discrete time nonlinear delay oscillator. With appropriate choice of the oscillator loop parameters and external forcing of the dynamics using a pulsed laser source, the system allows for the physical realization of a high dimensional mathematical nonlinear mapping. The dynamical features observed with this new class of discrete time delay oscillator differ significantly from those observed with similar continuous time nonlinear delay feedback oscillators and reveal the intrinsic discrete time nature of the dynamics. We also discuss specific applications to chaos communications using regularly clocked binary data.  相似文献   

14.
Chatchawal Sripakdee 《Optik》2011,122(6):535-539
We firstly analyze the thermal dissipation effects of the entangled photons generated by a nonlinear optical ring resonator. To obtain the corresponding equation of motion of the entangled photons generated by a four-wave mixing process within the system, we propose the Markov approximation to repel the reservoir operators. The system master equation in the interaction picture for both degenerate and non-degenerate cases is analyzed and obtained. The established system can be used to characterize the optimum entangled photons in some cases where the thermal dissipation effects may be introduced noise into the system. In this work, the entangled photons can be generated into two forms, firstly, the two entangled photon states is generated, the other, the four entangled photon states can be easily obtained. Results obtained have shown that the optimum entangled photon in term of entangled photon visibility can be compensated (i.e. unchanged) under thermal dissipation effects.  相似文献   

15.
We first propose a new system of a third harmonic generation by using a soliton pulse circulating in the integrated micro-ring devices. By using this system, the ultra-short pulse in the attosecond (as) and beyond can be easily generated. In principle, light pulse known as a soliton pulse is input into a design system. It consist the three-stage micro-ring resonators, where the ring radii are within the range between 5 and 35 μm. With the appropriate parameters such as ring radius, coupling ratio and nonlinear refractive index, the attosecond pulse is generated by filtering the chaotic signals within the micro-ring devices. One of the results obtained has shown that the generation of the ultra narrow pulse (spectral width) and sharp tip is achieved. The potential of using such a pulse for picometer (pm)-scale lithography is plausible.  相似文献   

16.
Solidly mounted resonators (SMRs) have recently been adopted as alternatives to quartz crystal microbalance in bio-molecular and chemical detection field. In this study, the resonance characteristics of highly c-axis-textured AlN film-based SMR were investigated to obtain better sensitivity for mass sensing applications. The resonant frequencies and quality factors of SMR with different sizes and shapes of active resonant configuration were characterized. The results show that the effect of active resonant area on the resonance frequency is insignificant. However, the quality factor is strongly dependent on the size and shape of active resonant area. Optimized resonant patterns were applied to a 2.0 GHz SMR and mass sensor. Experimental results indicate that the sensitivity of the device achieved can be as high as 6,544 Hz cm2/ng, which shows the promising application in bio-molecular and industrial detecting application.  相似文献   

17.
18.
A novel all-optical switch based on nonlinear polarization mechanism using polarization-maintaining fiber ring with a polarization rotator is proposed. Optical switching with low threshold of mW order and optical limiting with broader limiting range, less fluctuation, higher damage threshold and response speed are demonstrated numerically. The deterioration of switching and the improvement of limiting originating from losses are also studied. Considering the tradeoff between switching power and bandwidth, the way to increase bandwidth is discussed.  相似文献   

19.
The processes of the formation of phase spatial structures (patterns) in the cross section of a light wave in a passive nonlinear ring resonator are considered. Analytical and numerical calculations are performed. The potential to form roll- and hexagon-type phase patterns, which are the product of competitive dynamics of nonlinear modes in a resonator, and more complex phase patterns associated with cooperative dynamics of nonlinear modes is demonstrated by numerical modeling.  相似文献   

20.
Zinc oxide based film bulk acoustic resonator as mass sensor was fabricated by multi-target magnetron sputtering under optimized deposition condition. Each layer of the device was well crystallized and highly textural observed by transmission electron microscopy and X-ray diffraction measurement. Through piezoelectric test, the device vibrated with significant distance. The influence of top electrode on resonant frequency and the bio-specimen of mass loading effect were investigated. Data show that the device has qualified properties as mass biosensor, with a resonant frequency of 3-4 GHz and a high sensitivity of 8-10 kHz cm2/ng.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号