首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this paper we demonstrate optical writing of information on the spin state of a single Mn ion embedded in a CdTe/ZnTe quantum dot. As a tool for Mn spin orientation we use a spin-conserving transfer of excitation between two coupled quantum dots, one of them containing the Mn ion. Excitons created by circularly polarized light act on the Mn ion via the sp–d exchange interaction and orient its spin. The magnetic field of 1 T strongly enhances the orientation efficiency due to suppression of fast Mn spin relaxation mechanisms. Dynamics of the Mn spin under polarized excitation was measured in a time-resolved experiment, in which the intensity and polarization of excitation were modulated. Observed dynamics of the Mn spin can be described with a simple rate equation model.  相似文献   

3.
We demonstrate optically detected spin resonance of a single electron confined to a self-assembled quantum dot. The dot is rendered dark by resonant optical pumping of the spin with a laser. Contrast is restored by applying a radio frequency (rf) magnetic field at the spin resonance. The scheme is sensitive even to rf fields of just a few microT. In one case, the spin resonance behaves as a driven 3-level lambda system with weak damping; in another one, the dot exhibits remarkably strong (67% signal recovery) and narrow (0.34 MHz) spin resonances with fluctuating resonant positions, evidence of unusual dynamic processes.  相似文献   

4.
We report on the reversible electrical control of the magnetic properties of a single Mn atom in an individual quantum dot. Our device permits us to prepare the dot in states with three different electric charges, 0, +1e, and -1e which result in dramatically different spin properties, as revealed by photoluminescence. Whereas in the neutral configuration the quantum dot is paramagnetic, the electron-doped dot spin states are spin rotationally invariant and the hole-doped dot spins states are quantized along the growth direction.  相似文献   

5.
We report a measurement of the spin-echo decay of a single electron spin confined in a semiconductor quantum dot. When we tip the spin in the transverse plane via a magnetic field burst, it dephases in 37 ns due to the Larmor precession around a random effective field from the nuclear spins in the host material. We reverse this dephasing to a large extent via a spin-echo pulse, and find a spin-echo decay time of about 0.5 micros at 70 mT. These results are in the range of theoretical predictions of the electron spin coherence time governed by the electron-nuclear dynamics.  相似文献   

6.
We consider a quantum dot attached to leads in the Coulomb blockade regime that has a spin 1 / 2 ground state. We show that, by applying an ESR field to the dot spin, the stationary current in the sequential tunneling regime exhibits a new resonance peak whose linewidth is determined by the single spin decoherence time T2. The Rabi oscillations of the dot spin are shown to induce coherent current oscillations from which T2 can be deduced in the time domain. We describe a spin inverter which can be used to pump current through a double dot via spin flips generated by ESR.  相似文献   

7.
We report on the resonant optical pumping of the | ± 1? spin states of a single Mn dopant in an InAs/GaAs quantum dot which is embedded in a charge tunable device. The experiment relies on a W scheme of transitions reached when a suitable longitudinal magnetic field is applied. The optical pumping is achieved via the resonant excitation of the central Λ system at the neutral exciton X(0) energy. For a specific gate voltage, the redshifted photoluminescence of the charged exciton X- is observed, which allows a nondestructive readout of the spin polarization. An arbitrary spin preparation in the | + 1? or |-1? state characterized by a polarization near or above 50% is evidenced.  相似文献   

8.
We present measurements of the buildup and decay of nuclear spin polarization in a single semiconductor quantum dot. Our experiment shows that we polarize the nuclei in a few milliseconds, while their decay dynamics depends drastically on external parameters. We show that a single electron can very efficiently depolarize nuclear spins in milliseconds whereas in the absence of the electron the nuclear spin lifetime is on the scale of seconds. This lifetime is further enhanced by 1-2 orders of magnitude by quenching the nonsecular nuclear dipole-dipole interactions with a magnetic field of 1 mT.  相似文献   

9.
半导体量子点在低温下产生谱线细锐的激子发光可制备单光子源.光纤耦合可避免低温共聚焦装置扫描定位和振动影响,是实现单光子源即插即用和组件化的关键技术.在耦合工艺上,基于微区定位标记发展出拉锥光纤与光子晶体腔或波导侧向耦合、大数值孔径锥形端面光纤与量子点样片垂直耦合等技术;然而,上述工艺需要多维度精密调节以避免柔软光纤的畸形弯曲实现对准和高效耦合.陶瓷插针或石英V槽封装的光纤无弯曲且具有大平滑端面,只要与单量子点样片对准贴合就可保证垂直收光, V槽封装的排式光纤还可通过盲对粘合避免扫描对准,耦合简单.本文在前期排式光纤粘合少对数分布Bragg反射镜(distributed Bragg reflector, DBR)微柱样片实现单光子输出基础上,经理论模拟采用多对数DBR腔提升样片垂直出光和光纤收光效率,使光纤输出单光子计数率大大提升.  相似文献   

10.
We propose an optical method for the investigation of the quantum dot edge channels by utilizing circularly polarized photoluminescence in the integer-quantum-Hall-effect regime. One of the advantages of our method is that the degree of the spin-polarization of the electrons in the inner- and outer-compressible liquids can be probed separately. The observed polarized photoluminescence spectra can be explained by the calculated electron spin-dependent optical transition probabilities based on the local-spin density approximation.  相似文献   

11.
Nondegenerate (two-wavelength) two-photon absorption using coherent optical fields is used to show that there are two different quantum mechanical pathways leading to formation of the biexciton in a single quantum dot. Of specific importance to quantum information applications is the resulting coherent dynamics between the ground state and the biexciton from the pathway involving only optically induced exciton/biexciton quantum coherence. The data provide a direct measure of the biexciton decoherence rate which is equivalent to the decoherence of the Bell state in this system, as well as other critical optical parameters.  相似文献   

12.
The magnetic state of a single magnetic ion (Mn2+) embedded in an individual quantum dot is optically probed using microspectroscopy. The fine structure of a confined exciton in the exchange field of a single Mn2+ ion (S=5/2) is analyzed in detail. The exciton-Mn2+ exchange interaction shifts the energy of the exciton depending on the Mn2+ spin component and six emission lines are observed at zero magnetic field. Magneto-optic measurements reveal that the emission intensities in both circular polarizations are controlled by the Mn2+ spin distribution imposed by the exchange interaction with the exciton, the magnetic field, and an effective manganese temperature which depends on both the lattice temperature and the density of photocreated carriers. Under magnetic field, the electron-Mn interaction induces a mixing of the bright and dark exciton states.  相似文献   

13.
We report on the fabrication and the characterization of quantum dot transistors incorporating a single self-assembled quantum dot. The current–voltage characteristics exhibit clear staircase structures at room temperature. They are attributed to electron tunneling through the quantized energy levels of a single quantum dot.  相似文献   

14.
王启文  红兰 《物理学报》2012,61(1):17107-017107
在考虑Rashba自旋-轨道耦合的条件下, 采用二次幺正变换和变分方法研究了二维抛物量子点中由于电子与体纵光学声子的耦合作用形成的极化子在基态Zeeman分裂能级上的自旋弛豫过程.这一过程主要是通过吸收或发射一个形变势或压电声学声子完成.具体分析了强、弱耦合两种极限下极化子自旋弛豫率与外磁场、量子点半径、Landau因子参数、Rashba自旋轨道耦合参数的变化关系. 关键词: 自旋弛豫 极化子 Rashba自旋轨道耦合 量子点  相似文献   

15.
We report on the optical spectroscopy of a single InAs/GaAs quantum dot doped with a single Mn atom in a longitudinal magnetic field of a few Tesla. Our findings show that the Mn impurity is a neutral acceptor state A0 whose effective spin J=1 is significantly perturbed by the quantum dot potential and its associated strain field. The spin interaction with photocarriers injected in the quantum dot is shown to be ferromagnetic for holes, with an effective coupling constant of a few hundreds of mueV, but vanishingly small for electrons.  相似文献   

16.
We demonstrate electrical control of the spin relaxation time T1 between Zeeman-split spin states of a single electron in a lateral quantum dot. We find that relaxation is mediated by the spin-orbit interaction, and by manipulating the orbital states of the dot using gate voltages we vary the relaxation rate W identical withT1(-1) by over an order of magnitude. The dependence of W on orbital confinement agrees with theoretical predictions, and from these data we extract the spin-orbit length. We also measure the dependence of W on the magnetic field and demonstrate that spin-orbit mediated coupling to phonons is the dominant relaxation mechanism down to 1 T, where T1 exceeds 1 s.  相似文献   

17.
常博  梁九卿 《中国物理 B》2011,20(1):17307-017307
We have studied the quantum fluctuations of inelastic spin-electron scattering in quantum dot with an embedded biaxial single molecule-magnet and particularly investigated the zero-frequency shot noise and Fano factor in different magnetic fields. It is found that the shot noise and Fano factor exhibit a stepwise behaviour as bias increases in the presence of interaction between the electron and molecule-magnet for a weak magnetic field. As magnetic field becomes strong, a dip is displayed in the shot-noise-bias curve due to the suppression of inelastic shot noise caused by the quantum tunneling of magnetisation. Because of the spontaneous inelastic tunneling at zero bias, a small shot noise occurs, which results in the case of Fano factor F >> 1. Moreover, our results show that the sweeping speed can also influence the shot noise and Fano factor obviously.  相似文献   

18.
We propose and demonstrate the sequential initialization, optical control, and readout of a single spin trapped in a semiconductor quantum dot. Hole spin preparation is achieved through ionization of a resonantly excited electron-hole pair. Optical control is observed as a coherent Rabi rotation between the hole and charged-exciton states, which is conditional on the initial hole spin state. The spin-selective creation of the charged exciton provides a photocurrent readout of the hole spin state.  相似文献   

19.
We present a decay formula for photoluminescence of a single quantum dot. We apply the formula to time-resolved photoluminescence (PL) measurements for a single InAs/GaAs quantum dot. The formula works very well for the PL decays of excitons and biexcitons in the system. The physical basis of the formula originates from the temporal dispersion of lifetimes. PACS 78.67.Hc; 78.47.+p; 78.55.Cr; 71.35.-y  相似文献   

20.
The relaxation dynamics of a multiple exciton complex (multiexciton) confined in a semiconductor quantum dot has been investigated. Emission signals from a single self-organized GaAs/Al0.3Ga0.7As quantum dot are temporally resolved with picosecond time resolution. The emission spectra consisting of the multiexciton structures are observed to depend on the delay time and the excitation intensity. Quantitative agreement is found between the experimental data and the calculation based on a model describing the successive relaxation of multiexcitons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号