首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The overall kinetic performance of three production columns (2.1 mm × 100 mm format) packed with 1.6 μm superficially porous CORTECS‐C18+ particles was assessed on a low‐dispersive I‐class ACQUITY instrument. The values of their minimum intrinsic reduced plate heights (hmin = 1.42, 1.57, and 1.75) were measured at room temperature (295 K) for a small molecule (naphthalene) with an acetonitrile/water eluent mixture (75:25, v/v). These narrow‐bore columns provide an average intrinsic efficiency of 395 000 plates per meter. The gradient separation of 14 small molecules shows that these columns have a peak capacity about 25% larger than similar ones packed with fully porous BEH‐C18 particles (1.7 μm) or shorter (50 mm) columns packed with smaller core–shell particles (1.3 μm) operated under very high pressure (>1000 bar) for steep gradient elution (analysis time 80 s). In contrast, because their permeabilities are lower than those of columns packed with larger core–shell particles, their peak capacities are 25% smaller than those of narrow‐bore columns packed with standard 2.7 μm core–shell particles.  相似文献   

2.
Many brands of packing materials made of fine particles are now available in both conventional (4.6 mm i.d.) and narrow-bore (2.1 mm i.d.) columns. It is a general observation that the efficiency of the former tends to be markedly higher than that of the latter. This report provides a detailed illustration of the characteristics of this enigma. The corrected reduced plate heights of three brands of columns packed with shell particles in 4.6 and 2.1 mm I.D. columns were measured. The brands were the 1.7 and 2.6 μm Kinetex-C(18) (Phenomenex, Torrance, CA, USA), the 2.7 μm Poroshell120-C(18) (Agilent Technologies, New Castle, DE, USA), and the 2.7 μm Halo-C(18) (Advanced Material Technologies, Wilmington, DE, USA). The extra-column contributions were minimized by optimizing the configuration of the instrument (injection volume <1.0 μL, 115 μm needle seat capillary, 80 μm connecting tubes, no heat exchanger, 0.8 μL detection cell). The correct peak variances were derived from the numerical integration of the first and second order moments of the experimental band profiles. These experimental results confirm that the kinetic performance of narrow-bore columns is inferior to that of conventional columns for all three brands of shell particles. We demonstrate that this difference is accounted for by a contribution to the column HETP of the long-range eddy diffusion term that is larger in the 2.1 than in the 4.6 mm I.D. columns. While the associated relative velocity biases are of comparable magnitude in both types of columns, the characteristic radial diffusion lengths are of the order of 100 and 40 μm in the wall regions of narrow-bore and conventional columns, respectively.  相似文献   

3.
A loading and productivity study was done using three racemates on vancomycin and teicoplanin-bonded chiral stationary phases of different particle formats. Two columns were packed with 2.7 μm superficially porous particles and two columns were packed with identically bonded 5 μm fully porous particles. The last two columns were packed with specially synthesized 4.5 μm vancomycin and teicoplanin superficially porous particles. The loading of different chiral compounds showed that the columns filled with 2.7-μm chiral stationary phases were inappropriate for preparative separations due to their very low permeability which precluded high flow rates. However, columns containing 4.5 μm superficially porous (core-shell) particles were as effective for small-scale preparative chiral separations as columns filled with classical 5 μm fully porous particles. Comparing the 4.5 μm superficially porous particles and 5 μm fully porous particles teicoplanin columns, the observed respective productivities of 270 and 265 mg/g chiral phase/h for 5-methyl-5-phenyl hydantoin enantiomers were obtained. Particular attention was given to the peculiar case of the mianserin enantiomeric separation on vancomycin columns that gave observed productivities of 200 and 205 mg/g chiral phase/h on the 4.5 μm superficially porous particles and 5 μm fully porous particles, respectively.  相似文献   

4.
In the last decade, core–shell particles have gained more and more attention in fast liquid chromatography separations due to their comparable performance with fully porous sub‐2 μm particles and their significantly lower back pressure. Core–shell particles are made of a solid core surrounded by a shell of classic fully porous material. To embrace the developed core–shell column market and use these columns in pharmaceutical analytical applications, 17 core–shell C18 columns purchased from various vendors with various dimensions (50 mm × 2.1 mm to 100 mm × 3 mm) and particle sizes (1.6–2.7 μm) were characterized using Tanaka test protocols. Furthermore, four selected active pharmaceutical ingredients were chosen as test probes to investigate the batch to batch reproducibility for core–shell columns of particle size 2.6–2.7 μm, with dimension of 100 × 3 mm and columns of particle size 1.6 μm, with dimension 100 × 2.1 mm under isocratic elution. Columns of particle size 2.6–2.7 μm were also tested under gradient elution conditions. To confirm the claimed comparable efficiency of 2.6 μm core–shell particles as sub‐2 μm fully porous particles, column performances of the selected core–shell columns were compared with BEH C18, 1.7 μm, a fully porous column material as well.  相似文献   

5.
Commercial C(18) columns packed with superficially porous particles of different sizes and shell thicknesses (Ascentis Express, Kinetex, and Poroshell 120) or sub-2-μm totally porous particles (Acquity BEH) were systematically compared using a small molecule mixture and a complex natural product mixture as text probes. Significant efficiency loss was observed on 2.1-mm id columns even with a low dispersion ultra-high pressure liquid chromatography system. The Kinetex 4.6-mm id column packed with 2.6-μm particles exhibited the best overall efficiency for small molecule separations and the Poroshell 120 column showed better performance for mid-size natural product analytes. The Kinetex 2.1-mm id column packed with 1.7-μm particles did not deliver the expected performance and the possible reasons besides extra column effect have been proved to be frictional heating effect and poor column packing quality. Different column retentivities and selectivities have been observed on the four C(18) columns of different brands for the natural product separation. Column batch-to-batch variability that has been previously observed on the Ascentis Express column was also observed on the Kinetex and Poroshell 120 column.  相似文献   

6.
The mass transfer mechanisms in columns packed with old (55 μm Zipax and 5 μm Poroshell) and recently commercialized shell particles (2.7 μm Halo-C(18) and Kinetex-C(18)) were investigated from a physico-chemical point of view. Combining a model of diffusion in heterogeneous packed beds (effective medium theory) with values of the heights equivalent to a theoretical plate (HETPs derived from the first and second central moments of the elution profiles) and of the peak variances provided by the peak parking method, we demonstrate that columns packed with current shell particles perform better than those packed with fully porous particles in resolving low molecular weight compounds because the eddy diffusion term of the van Deemter equation of the former is markedly smaller. The calculation of eddy diffusion in column beds suggests that the smaller A terms are due to smaller trans-column velocity bias in columns packed with shell particles. We also show that the mass transfer of large molecules (e.g., proteins) is faster when the internal volume accessible to the analyte increases. Therefore, it is suggested that shell particles made of concentric layers with average pore sizes increasing with increasing diameter would provide columns with higher efficiency.  相似文献   

7.
A stationary phase bearing both bridged bis‐ureido and free amino groups (USP‐HILIC‐NH2–2.5SP) for high‐speed hydrophilic interaction liquid chromatography separations was prepared using a one‐pot two‐step procedure starting from 2.5 μm totally porous silica particles. Highly polar compounds, such as polyols, hydroxybenzoic acids, and sugars, were successfully analyzed in shorter times and with higher peak efficiency, when compared to results obtained with a bidentate urea‐type column packed with 5 μm particles. Increased sugarophilicity and better peak shape were attested for the USP‐HILIC‐NH2–2.5SP column (100 × 3.2 mm id) when compared with two commercially available UHPLC columns, namely an acquity BEH amide packed with totally porous 1.7 μm microparticles and a HILIC Kinetex column packed with core–shell 2.6 μm particles. Finally, the new column was employed in the separation of complex mixture of sugars (mono‐, di‐, and oligosaccharides) and in the analysis of beer samples. The resulting chromatograms showed good selectivity and overall resolution, while the catalyzing effect of the free amino moieties resulted in excellent peak shapes and in the absence of split peaks due to sugar anomerization phenomena.  相似文献   

8.
Three HPLC columns packed with 3 μm, sub‐2 μm, and 2.7 μm Fused‐Core (superficially porous) particles were compared in separation performance using two natural product mixtures containing 15 structurally related components. The Ascentis ExpressTM C18 column packed with Fused‐Core particles showed an 18% increase in column efficiency (theoretical plates), a 76% increase in plate number per meter, a 65% enhancement in separation speed and a 19% increase in back pressure compared to the Atlantis T3TM C18 column packed with 3 μm particles. Column lot‐to‐lot variability for critical pairs in the natural product mixture was observed with both columns, with the Atlantis T3 column exhibiting a higher degree of variability. The Ascentis Express column was also compared with the AcquityTM BEH column packed with sub‐2 μm particles. Although the peak efficiencies obtained by the Ascentis Express column were only about 74% of those obtained by the Acquity BEH column, the 50% lower back pressure and comparable separation speed allowed high‐efficiency and high‐speed separation to be performed using conventional HPLC instrumentation.  相似文献   

9.
Small columns packed with core-shell and sub-2 μm totally porous particles and monolith columns are very popular to conduct fast and efficient chromatographic separations. In order to carry out fast separations, short (2-5 cm) and narrow-bore (2-2.1 mm) columns are used to decrease the analyte retention volume. Beside the column efficiency, another significant issue is the extra-column band-spreading. The extra-column dispersion of a given LC system can dramatically decrease the performance of a small very efficient column. The aim of this study was to compare the extra-column peak variance contribution of several commercially available LC systems. The efficiency loss of three different type 5 cm long narrow bore, very efficient columns (monolith, sub-2 μm fully porous and sub-2 μm core-shell packing) as a function of extra-column peak variance, and as a function of flow rate and also kinetic plots (analysis time versus apparent column efficiency) are presented.  相似文献   

10.
Chromatographic properties of a new type of monolithic silica rod columns were examined. Silica rod columns employed for the study were prepared from tetramethoxysilane, modified with octadecylsilyl moieties, and encased in a stainless-steel protective column with two polymer layers between the silica and the stainless-steel tubing. A 25 cm column provided up to 45,000 theoretical plates for aromatic hydrocarbons, or a minimum plate height of about 5.5 μm, at optimum linear velocity of ca. 2.3 mm/s and back pressure of 7.5 MPa in an acetonitrile-water (80/20, v/v) mobile phase at 40°C. The permeability of the column was similar to that of a column packed with 5 μm particles, with K(F) about 2.4×10(-14) m(2) (based on the superficial linear velocity of the mobile phase), while the plate height value equivalent to that of a column packed with 2.5 μm particles. Generation of 80,000-120,000 theoretical plates was feasible with back pressure below 30 MPa by employing two or three 25 cm columns connected in series. The use of the long columns enabled facile generation of large numbers of theoretical plates in comparison with conventional monolithic silica columns or particulate columns. Kinetic plot analysis indicates that the monolithic columns operated at 30 MPa can provide faster separations than a column packed with totally porous 3-μm particles operated at 40 MPa in a range where the number of theoretical plates (N) is greater than 50,000.  相似文献   

11.
The recent successful breakthrough of sub-3 μm shell particles in HPLC has triggered considerable research efforts toward the design of new brands of core-shell particles. We investigated the mass transfer mechanism of a few analytes in narrow-bore columns packed with prototype 1.7 μm shell particles, made of 1.0, 1.2, and 1.4 μm solid nonporous cores surrounded by porous shells 350, 250, and 150 nm thick, respectively. Three probe solutes, uracil, naphthalene, and insulin, were chosen to assess the kinetic performance of these columns. Inverse size exclusion chromatography, peak parking experiments, and the numerical integration of the experimental peak profiles were carried out in order to measure the external, internal, and total column porosities, the true bulk diffusion coefficients of these analytes, the height equivalent to a theoretical plate, the longitudinal diffusion term, and the trans-particle mass transfer resistance term. The residual eddy diffusion term was measured by difference. The results show the existence of important trans-column velocity biases (7%) possibly due to the presence of particle multiplets in the slurry mixture used during the packing process. Our results illustrates some of the difficulties encountered by scientists preparing and packing shell particles into narrow-bore columns.  相似文献   

12.
Ultra high-performance liquid chromatographic (UHPLC) systems on columns packed with materials ranging from 1.9 to 2.7 μm average particle size were assessed for the fast and sensitive analysis of porphyrins in clinical materials. The fastest separation was achieved on an Agilent Poroshell C(18) column (2.7 μm particle size, 50 × 4.6 mm i.d.), followed by a Thermo Hypersil Gold C(18) column (1.9 μm particle size, 50 × 2.1 mm i.d.) and the Thermo Hypersil BDS C(18) column (2.4 μm particle size, 100 × 2.1 mm i.d.). All columns required a mobile phase containing 1 m ammonium acetate buffer, pH 5.16, with a mixture of acetonitrile and methanol as the organic modifiers for optimum resolution of the type I and III isomers, particularly for uroporphyrin I and III isomers. All UHPLC columns were suitable and superior to conventional HPLC columns packed with 5 μm average particle size materials for clinical sample analysis.  相似文献   

13.
The aim of this study was to evaluate the possibilities/limitations of recent RP‐LC columns packed with 1.6 μm superficially porous particles (Waters Cortecs) and to compare its potential to other existing sub‐2 μm core–shell packings. The kinetic performance of Kinetex 1.3 μm, Kinetex 1.7 μm and Cortecs 1.6 μm stationary phases was assessed. It was found that the Kinetex 1.3 μm phase outperforms its counterparts for ultra‐fast separations. Conversely, the Cortecs 1.6 μm packing seemed to be the best stationary phase for assays with longer analysis time in isocratic and gradient modes, considering small molecules and peptides as test probes. This exceptional behaviour was attributed to its favourable permeability and somewhat higher mechanical stability (ΔPmax of 1200 bar). The loading capacity of these three columns was also investigated with basic and neutral drugs analysed under acidic conditions. It appears that the loading capacities of Cortecs 1.6 μm and Kinetex 1.7 μm were very close, while it was reduced by 2–7‐fold on the Kinetex 1.3 μm packing. However, this observation is dependent on the nature of the compound and certainly also on mobile phase conditions.  相似文献   

14.
The recently introduced Kinetex C18 column packed with core-shell 2.6 ??m particles is declared to provide similar efficiency and short analysis as Acquity BEH C18 column with 1.7 ??m porous particles. Unlike Acquity BEH C18 column, Kinetex C18 column exhibited lower column backpressure making this column compatible to conventional LC systems. The performance of Kinetex C18 column (2.1 × 50 mm) and Acquity BEH C18 column (2.1 × 50 mm) for gradient separation of tetracyclines under acidic conditions (oxytetracycline, tetracycline, chlortetracycline, and doxycycline) and macrolides under alkaline conditions (tylosin, clarithromycin, roxithromycin, and carbomycin) was studied. The columns were compared by evaluation of their experimental peak capacity and its dependence on linear velocity and gradient slope. The maximal experimental peak capacities for analysis of tetracyclines were 51.8 (Acquity BEH C18 column) and 48.4 (Kinetex C18 column). This indicated that Kinetex C18 was a suitable alternative to Acquity BEH C18 column for the analysis of tetracyclines under acidic conditions. On the contrary, the maximal experimental peak capacities for analysis of macrolides on Acquity BEH C18 column was higher (46.7) than that on Kinetex C18 column (36.9). Moreover, application of Kinetex C18 column for the analysis of macrolides under alkaline conditions was limited with respect to its decreasing performance with growing number of injections on the column.  相似文献   

15.
The potential of high-speed analyses by rapid resolution liquid chromatography (RRLC) and RRLC/MS on 1.8-microm porous particles packed into short columns operated at high flow-rate was investigated and compared with the performance of 5-microm porous particles packed into conventional columns. Using similar chemistries, the ease of conversion from conventional HPLC to an RRLC method was demonstrated. In order to display the practicality of RRLC separations, the analysis of pesticides in crops and catechins in Japanese green tea was selected. Using the Japanese Food Hygiene Law method, which employs a conventional 5-microm RP column (250 mm x 4.6 mm) for quantification of pesticides in crops, the analysis time was 25 min under isocratic conditions. Using the RRLC method on the short (50 mm x 4.6 mm) column packed with 1.8-microm porous particles, the same separation could be performed in 0.8 min with the RRLC/MS method without a loss in resolution. At the highest flow rate, compared to the conventional method, the time could be reduced by a factor of 31. In gradient elution, the fastest separation of catechins in Japanese green tea was achieved by RRLC on 50-mm x 4.6-mm id or 50-mm x 2.1-mm id RRLC columns packed with 1.8-microm particles. The analysis time at 5 mL/min was less than 1 min. Compared to the conventional HPLC method on a 150-mm column packed with 5-microm particles, time was reduced by a factor of 15. The effect of other experimental parameters such as the column temperature, acquisition rate of the detector and the influence of cell volume on chromatographic performance was also investigated. After the optimization, the analysis precision under the fastest RRLC conditions was examined. RSDs of retention time and peak area were 0.2% and 0.47%, respectively.  相似文献   

16.
New generation columns, i.e. packed with superficially porous silica particles are available as trade names with following manufacturers: Halo, Ascentis Express, Proshell 120, Kinetex, Accucore, Sunshell, and Nucleoshell. These provide ultra‐fast HPLC separations for a variety of compounds with moderate sample loading capacity and low back pressure. Chemistries of these columns are C8, C18, RP‐Amide, hydrophilic interaction liquid chromatography, penta fluorophenyl (PFP), F5, and RP‐aqua. Normally, the silica gel particles are of 2.7 and 1.7 μm as total and inner solid core diameters, respectively, with 0.5‐μm‐thick of outer porous layer having 90 Å pore sizes and 150 m2/g surface area. This article describes these new generation columns with special emphasis on their textures and chemistries, separations, optimization, and comparison (inter and intra stationary phases). Besides, future perspectives have also been discussed.  相似文献   

17.
Peak parking experiments were conducted to study the chromatographic behavior in a RPLC system consisting of a column packed with superficially porous C(18)-particles and a mixture of methanol and water (70/30, v/v). The values of the surface diffusion coefficient and the retention equilibrium constant of a column packed with superficially porous C(18)-particles were comparable to those of columns packed with a C(18)-silica monolith and full-porous C(18)-silica gel particles. The flow-rate dependence of HETP was hypothetically calculated by using moment equations to clarify the influence of the structural characteristics on the chromatographic behavior. The column efficiency of a column packed with the superficially porous particles is higher in the high flow-rate range than that with full-porous spherical particles. This is attributed to the smaller contribution of the intraparticulate mass transfer in the superficially porous particles to band broadening. The moment equations are effective for the quantitative analysis of chromatographic behavior of superficially porous particles.  相似文献   

18.
Three columns packed with 2.0 μm superficially porous particles, 1.7 μm fully porous particles, and monodisperse 1.9 μm fully porous particles with narrow particle size distribution have been deeply characterized from a kinetic point of view. The 1.9 μm column showed excellent kinetic performance, comparable to that of the superficially porous one. These two columns also exhibit flatter c‐branches of the van Deemter curve compared to the 1.7 μm fully porous particles column, resulting in smaller loss of efficiency when they are operated at higher flow rates than the optimal ones. The independent evaluation of each contribution to band broadening has revealed that the difference in kinetic performance comes from the very small eddy dispersion contribution on the 1.9 μm column, surprisingly even lower than that of the superficially porous one. This finding suggests a very good packing of the monodisperse 1.9 μm column. On the other hand, the potential of 1.7 μm fully porous particles is completely broken down by the strong frictional heating effect already arising at relatively low flow rates.  相似文献   

19.
We report on the optimization of nano‐LC gradient separations of proteomic samples that vary in complexity. The gradient performance limits were visualized by kinetic plots depicting the gradient time needed to achieve a certain peak capacity, while using the maximum system pressure of 80 MPa. The selection of the optimal particle size/column length combination and corresponding gradient steepness was based on scouting the performance of 75 μm id capillary columns packed with 2, 3, and 5 μm fully porous silica C18 particles. At optimal gradient conditions, peak capacities up to 500 can be obtained within a 120 min gradient using 2 μm particle‐packed capillary columns. Separations of proteomic samples including a cytochrome c tryptic digest, a bovine serum albumin tryptic digest, a six protein mix digest, and an Escherichia coli digest are demonstrated while operating at the kinetic‐performance limit, i.e. using 2‐μm packed columns, adjusting the column length and scaling the gradient steepness according to sample complexity. Finally, good run‐to‐run retention time stability (RSD values below 0.18%) was demonstrated applying ultra‐high pressure conditions.  相似文献   

20.
Three mixed‐mode high‐performance liquid chromatography columns packed with superficially porous carbon/nanodiamond/amine‐polymer particles were used to separate mixtures of cannabinoids. Columns evaluated included: (i) reversed phase (C18), weak anion exchange, 4.6 × 33 mm, 3.6 μm, and 4.6 × 100 mm, 3.6 μm, (ii) reversed phase, strong anion exchange (quaternary amine), 4.6×33 mm, 3.6 μm, and (iii) hydrophilic interaction liquid chromatography, 4.6 × 150 mm, 3.6 μm. Different selectivities were achieved under various mobile phase and stationary phase conditions. Efficiencies and peak capacities were as high as 54 000 N/m and 56, respectively. The reversed phase mixed‐mode column (C18) retained tetrahydrocannabinolic acid strongly under acidic conditions and weakly under basic conditions. Tetrahydrocannabinolic acid was retained strongly on the reversed phase, strong anion exchange mixed‐mode column under basic polar organic mobile phase conditions. The hydrophilic interaction liquid chromatography column retained polar cannabinoids better than the (more) neutral ones under basic conditions. A longer reversed phase (C18) mixed‐mode column (4.6 × 100 mm) showed better resolution for analytes (and a contaminant) than a shorter column. Fast separations were achieved in less than 5 min and sometimes 2 min. A real world sample (bubble hash extract) was also analyzed by gradient elution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号